21. Nuclear Chemistry- Multiple Choice Questions

. Nucleus (Stability and Reaction)

- The nucleus of radioactive element possesses
 - (a) Low binding energy
- (b) High binding energy
- (c) Zero binding energy
- (d) High otential energy
- 2. Positron has nearly the same weight as that of
 - (a) α -particle
- (b) Proton
- (c) Neutron
- (d) Electron
- **3.** On comparing chemical reactivity of C^{12} and C^{14} , it is revealed that
 - (a) C^{12} is more reactive
- (b) C^{14} is more reactive
- (c) Both are inactive
- (d) Both are equally active
- Positronium is the name given to an atom-like combination formed between
 - (a) A positron and a proton
 - (b) A positron and a neutron
 - (c) A positron and α -particle
 - (d) A positron and an electron
- 5. ${}_{6}C^{14}$ is formed from ${}_{7}N^{14}$ in the upper atmosphere by the action of the particle
 - (a) Positron
- (b) Neutron
- (c) Electron
- (d) Proton
- **6.** Formation of nucleus from its nucleons is accompanied by
 - (a) Decrease in mass
- (b) Increase in mass
- (c) No change of mass
- (d) None of them
- 7. The positron was discovered by
 - (a) Pauling
- (b) Anderson
- (c) Yukawa
- (d) Segar
- **8.** Which of the following atomic mass of uranium is the most radioactive
 - (a) 238
- (b) 235
- (c) 226

- (d) 248
- 9. The measure of binding energy of a nucleus is the
 - (a) Mass defect
- (b) Energy of protons
- (c) Energy of neutrons
- (d) Total energy of nucleons
- **10.** In the nuclear reaction ${}_{4}^{9}Be(p,\alpha)X$, X is
 - (a) ⁴₂He
- (b) ${}_{3}^{6}Li$
- (c) ⁷₃Li

(d) ${}_{4}^{8}Be$

- **11.** The binding energy of ${}_{8}O^{16}$ is 127 MeV. Its binding energy per nucleon is
 - (a) 0.794 MeV
- (b) 1.5875 MeV
- (c) 7.94 MeV
- (d) 15.875 MeV
- **12.** ${}_{Z}X^{M} + {}_{2}He^{4} \rightarrow {}_{15}P^{30} + {}_{0}r^{1}$. Then
 - (a) Z = 12, M = 27
- (b) Z = 13, M = 27
- (c) Z = 12, M = 17
- (d) Z = 13, M = 28
- **13.** What is the packing fraction of ${}_{26}^{56}Fe$ (Isotopic mass = 55.92066)
 - (a) -14.167
- (b) 173.90
- (c) -14.187
- (d) -73.90
- **14.** The missing particle in the reaction, $^{235}_{92}U + ^1_0n \rightarrow {}_{56}Ba^{146} + ... + 3^1_0n$ is
 - (a) $^{87}_{32}Ge$
- (b) $^{89}_{35}Br$
- (c) $^{87}_{36}Kr$
- (d) $^{86}_{35}Br$
- **15.** Stable nuclides are those whose n/p ratio is
 - (a) n/p = 1
- (b) n/p = 2

(d) n/p < 1

- (c) n/p > 1
- **16.** Which of the following is the most stable atom
 - (a) Bi
- (b) A1

(c) U

- (d) Pb
- 17. Doubly magic nucleus is
 - (a) $_{82}Pb^{207}$
- (b) $_{82}Pb^{206}$
- (c) $_{82}Pb^{208}$
- (d) $_{83}Bi^{209}$
- 18. Which can be used for carrying out nuclear reaction
 - (a) Uranium 238
- (b) Neptunium 239
- (c) Thorium 232
- (d) Plutonium 239
- 19. In the sequence of following nuclear reactions ${}_{92}X^{238} \xrightarrow{-\alpha} Y \xrightarrow{-\beta} Z \xrightarrow{-\beta} L \xrightarrow{-n\alpha} {}_{84}M^{218}$

the value of n will be

(a) 3

(b) 4

(c) 5

- (d) 6
- **20.** $X \xrightarrow{-\alpha} Y \xrightarrow{-\beta} Z \xrightarrow{-\beta} W$

In the above sequence of reaction, the elements which are isotopes of each other are

- (a) X and W
- (b) Y and Z
- (c) X and Z
- (d) None of these

91	Identify the nuclear reaction	that differs from the rest
21.		(b) K- capture
		(d) α -decay
	(c) β-decay	(d) a deedy
	(e) γ – decay	number of neutrons is
22.		e same number of neutrons is (b) $^{23}_{11}Na, ^{19}_{9}F$
	(a) ${}_{6}^{12}C, {}_{12}^{24}Mg$	•
	(c) $^{23}_{11}Na$, $^{24}_{12}Mg$	(d) ²³ ₁₁ Na, ³⁹ ₁₉ K
2.	Radioactivity and α , β	and γ- Rays
1.	Radioactivity was discovered	d by
	(a) Henry Becquerel	(b) Rutherford
	(c) J. J. Thomson	(d) Madam-Curie
2.	Uranium ultimately decays i	nto a stable isotope of
	(a) Radium	(b) Carbon
	(c) Lead	(d) Neptunium
3.	If radium and chlorine comb compound would be	ine to form radium chloride, the
	(a) Half as radioactive as ra	adium
	(b) Twice as radioactive	
	(c) As radioactive as radiur	m
	(d) Not radioactive	
4.	A nuclear reaction is ac equivalent to 0.01864 amu	companied by loss of mass . Energy liberated is
	(a) 931 MeV	(b) 186.6 MeV
	(c) 17.36 MeV	(d) 460 MeV
5.	Nuclear theory of the atom	was put forward by
	(a) Rutherford	(b) Aston
	(c) Neils Bohr	(d) J.J. Thomson
6.	Which of the following has	he highest value of radioactivity
	(a) 1 g of Ra	(b) 1 g of RaSO ₄
	(c) 1 g of RaBr ₂	(d) $1 g$ of $Ra(HPO_4)$
7.	Penetrating power of α -part	ticle is
	(a) More than γ -rays	(b) More than β -rays
	(c) Less than β -rays	(d) None of these
8.	N W W	the one most easily stopped by
	(a) α -rays	(b) β -rays
	(c) γ -rays	(d) X-rays
9.		f velocity of alpha (α) , beta (β)
	and gamma (1) rays	μ
	(a) $\alpha > \beta > \gamma$	(b) $\alpha > \gamma > \beta$
	(c) $\gamma > \alpha > \beta$	(d) $\gamma > \beta > \alpha$

10.	follows the order	power or α , β , γ and neutron (η)
	(a) $\alpha > \beta > \gamma > n$	(b) $n > \gamma > \beta > \alpha$
	(c) $\beta > \alpha > n > \gamma$	(d) None of these
1.	Highest ionising power is	s exhibited by
	(a) α – rays	(b) β – rays
	(c) γ – rays	(d) $X - rays$
12.	and β particles should	f α and β particles, how many α be emitted for the natural $(4n+1)$
	series, conversion of $_{94}h$	
	(a) α, β	(b) $\alpha, 2\beta$
	(c) $2\alpha, 3\beta$	(d) $2\alpha, 2\beta$
13.	Which of the following d	oes not contain material particles
	(a) Alpha rays	(b) Beta rays
	(c) Gamma rays	(d) Canal rays
14.	When $_3Li^7$ is bomb	arded with proton, γ -rays are
	produced. The nuclide f	ormed is
	(a) $_3Li^8$	(b) ₄ Be ⁸
	9	
3.	(c) ₃ B ⁹ Causes of Radioac	(d) ₄ Be ⁹
3.	Causes of Radioac Displacement Law	tivity and Group
	Causes of Radioac Displacement Law In the reaction, Po—	tivity and Group $\stackrel{\alpha}{\longrightarrow} Pb \stackrel{-\beta}{\longrightarrow} Bi, \text{ if } Bi, \text{ belongs to}$
	Causes of Radioac Displacement Law In the reaction, Po— group 15, to which Po b	tivity and Group $\stackrel{x}{\longrightarrow} Pb \stackrel{-\beta}{\longrightarrow} Bi, \text{ if } Bi, \text{ belongs to elongs}$
	Causes of Radioac Displacement Law In the reaction, Po—— group 15, to which Po b (a) 14	tivity and Group $A \to Pb \xrightarrow{-\beta} Bi$, if Bi , belongs to elongs (b) 15
1.	Causes of Radioac Displacement Law In the reaction, Po—— group 15, to which Po b (a) 14 (c) 13	tivity and Group $A \to Pb \xrightarrow{-\beta} Bi$, if Bi , belongs to elongs (b) 15 (d) 16
1.	Causes of Radioac Displacement Law In the reaction, Po—— group 15, to which Po b (a) 14 (c) 13 ₉₅ Am ²⁴¹ and ₉₀ Th ²³⁴	tivity and Group $(a \to Pb \xrightarrow{-\beta} Bi$, if Bi , belongs to elongs (b) 15 (d) 16 belong respectively to
1.	Causes of Radioac Displacement Law In the reaction, Po—— group 15, to which Po b (a) 14 (c) 13 ₉₅ Am ²⁴¹ and ₉₀ Th ²³⁴ (a) 4n and 4n+1 radio	tivity and Group $ \xrightarrow{\epsilon} Pb \xrightarrow{-\beta} Bi $, if Bi , belongs to elongs (b) 15 (d) 16 belong respectively to lioactive disintegration series
1.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (b) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (c) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (d) $_{95}Am^{241}$ and $_{90}Th^{234}$	tivity and Group $(a \to Pb \xrightarrow{-\beta} Bi, \text{ if } Bi, \text{ belongs to elongs}$ (b) 15 (d) 16 belong respectively to lioactive disintegration series radioactive disintegration series
1.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (b) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (c) 4 n and 4 n +1 rad (d) 4 n +1 and 4 n +2 (e) 4 n +1 and 4 n +3	tivity and Group $(a) Pb \xrightarrow{-\beta} Bi$, if Bi , belongs to elongs (b) 15 (d) 16 belong respectively to disordive disintegration series radioactive disintegration series radioactive disintegration series
1. 2.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (c) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (a) $4n$ and $4n+1$ rad (b) $4n+1$ and $4n+2$ (c) $4n+1$ and $4n+3$ (d) $4n+1$ and $4n$ rad	tivity and Group $(b) 15$ (d) 16 belong respectively to lioactive disintegration series radioactive disintegration series radioactive disintegration series lioactive disintegration series
1. 2.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (c) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (a) $4n$ and $4n+1$ rad (b) $4n+1$ and $4n+2$ (c) $4n+1$ and $4n+3$ (d) $4n+1$ and $4n$ rad The number of α and	tivity and Group $(a) Pb \xrightarrow{-\beta} Bi$, if Bi , belongs to elongs (b) 15 (d) 16 belong respectively to disordive disintegration series radioactive disintegration series radioactive disintegration series disordive disintegration series $(a) Bi$ and $(a) Bi$ are allowed by $(a) Bi$ and $(a) Bi$ are allowed
1. 2.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (b) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (a) $4n$ and $4n+1$ rad (b) $4n+1$ and $4n+2$ (c) $4n+1$ and $4n+3$ (d) $4n+1$ and $4n$ rad The number of α and reaction $_{90}Th^{228} \rightarrow _{83}B$	tivity and Group $(a) Pb \xrightarrow{-\beta} Bi$, if Bi , belongs to elongs (b) 15 (d) 16 belong respectively to disoactive disintegration series radioactive disintegration series radioactive disintegration series disoactive disintegration series $(a) Bi$ and $(a) Bi$ are respectively
1. 2.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (b) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (c) 4 n and 4 n +1 rad (d) 4 n +1 and 4 n +2 (e) 4 n +1 and 4 n +3 (f) 4 n +1 and 4 n +3 (g) 4 n +1 and 4 n +3 (g) 4 n +1 and 4 n +3 (h) 4 n +1 and 4 n +3	tivity and Group $(b) 15$ (d) 16 belong respectively to lioactive disintegration series radioactive disintegration series radioactive disintegration series β - particles emitted in the nuclear i^{212} are respectively (b) 3, 7
1. 2.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (c) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (a) $4n$ and $4n+1$ rad (b) $4n+1$ and $4n+2$ (c) $4n+1$ and $4n+3$ (d) $4n+1$ and $4n$ rad The number of α and reaction $_{90}Th^{228} \rightarrow _{83}B$ (a) 4, 1 (b) 8, 1	tivity and Group $(b) 15$ (d) 16 belong respectively to lioactive disintegration series radioactive disintegration series radioactive disintegration series β - particles emitted in the nuclear β are respectively (b) 3, 7 (d) 4, 7
1.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (b) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (c) 4 n and 4 n +1 rad (d) 4 n +1 and 4 n +2 (e) 4 n +1 and 4 n +3 (f) 4 n +1 and 4 n +3 (g) 4 n +1 and 4 n +3 (g) 4 n +1 and 4 n +3 (h) 4 n +1 and 4 n +3	tivity and Group $(b) 15$ (d) 16 belong respectively to lioactive disintegration series radioactive disintegration series radioactive disintegration series β - particles emitted in the nuclear (c) are respectively (b) 3, 7 (d) 4, 7 [B] in the following
1. 2.	Causes of Radioac Displacement Law In the reaction, Po — group 15, to which Po b (a) 14 (b) 13 $_{95}Am^{241}$ and $_{90}Th^{234}$ (a) 4 n and 4 n +1 rad (b) 4 n +1 and 4 n +2 (c) 4 n +1 and 4 n +3 (d) 4 n +1 and 4 n rad The number of α and reaction $_{90}Th^{228} \rightarrow _{83}B$ (a) 4, 1 (b) 8, 1 Identify [A] and	tivity and Group $(b) 15$ (d) 16 belong respectively to lioactive disintegration series radioactive disintegration series radioactive disintegration series β - particles emitted in the nuclear (c) are respectively (b) 3, 7 (d) 4, 7 [B] in the following

10. The relative penetrating power of α , β , γ and neutron (n)

(d) Th, Ra

(b) Bi

(d) C

Which element is the end product of each natural

(c) Ra, Th

(a) Sn

(c) Pb

radioactive series

5.

6.	$^{27}_{13}$ Al is a stable isotope. $^{22}_{13}$	⁹ Al is expected to disintegrate by	16. During the transformation of ${}^bX_a \rightarrow {}^dY_c$ the number of β -
		t Germande, projekt genede der eine eine eine eine eine eine eine ei	particles emitted is
	(a) α -emission	(b) β -emission	(a) $\frac{(b-d)}{4}$ (b) $(c-a) + \frac{1}{2}(b-d)$
	(c) Positron emission	(d) Proton emission	(a) $\frac{(b-d)}{4}$ (b) $(c-a) + \frac{1}{2}(b-d)$
7.	Which one of the followi incorrectly	ing notations shows the product	(c) $(a-c)-\frac{1}{2}(b-d)$ (d) $(b-d)+2(c-a)$
	(a) $_{96}^{242}Cm(\alpha,2n)_{97}^{243}Bk$	(b) ${}_{5}^{10}B(\alpha,n){}_{7}^{13}N$	(e) $(b-d)+\frac{1}{2}(c-a)$
	(c) ${}^{14}_{7}N(n,p){}^{14}_{6}C$	(d) $^{28}_{14}$ Si(d,n) $^{29}_{15}$ P	17. In the nuclear reaction ${}^{234}_{90}Th \rightarrow {}^{234}_{91}Pa + X. X$ is
8.	The radioactive series who	se end product is $^{209}_{83}Bi$ is	(a) $_{-1}^{0}e$ (b) $_{1}^{0}e$
	(a) Thorium series	(b) Fourier series	(a) $_{-1}^{0}e$ (b) $_{1}^{0}e$
	(c) Actinium series	(d) Neptunium series	(c) H (d) ${}_{1}^{2}H$
9.	In the nuclear reaction 92 alpha and beta particles d	$U^{238} ightarrow_{82}Pb^{206}$, the number of ecayed are	18. In the radioactive disintegration series $^{232}_{90}Th \rightarrow ^{208}_{82}Pb$, involving α and β decay, the total number of α and β
	(a) $4\alpha, 3\beta$	(b) $8\alpha,6\beta$	particles emitted are
	(c) $6\alpha, 4\beta$	(d) $7\alpha,5\beta$	(a) 6α and 6β (b) 6α and 4β
10.	An artificial radioactive	e isotope gave ${}^{14}_{7}N$ after two	(c) 6α and 5β (d) 5α and 6β
	successive β – particle en in the parent nucleus mus	nissions. The number of neutrons	4. Rate of Decay and Half-Life
	(a) 9	(b) 14	1. Half-life period of a metal is 20 days. What fraction of meta
	(c) 5	(d) 7	remains after 80 days
11.	Tritium undergoes radioa	ctive decay giving	(a) 1 (b) 1/16
	(a) α -particles	(b) β -particles	(c) 1/4 (d) 1/8
	(c) Neutrons	(d) None of these	2. A radioactive isotope having a half-life of 3 days wa
12.	If it is assumed that ${}^{235}_{92}Uc$ -particles, the possible pro	decays only by emitting α and β oduct of the decay is	received after 12 days. It was found that, there were 3 g of the isotope in the container. The initial weight of the isotope when packed was
	(a) $^{225}_{89}Ac$	(b) $^{227}_{89}Ac$	(a) 12 g (b) 24 g
	(c) $^{230}_{89}Ac$	(d) $^{231}_{89}Ac$	(c) 36 g (d) 48 g
13.		exparticle then it will be shifted in	3. If $12 g$ of sample is taken, and $6 g$ of a sample decays in

- (a) 3g
- (b) 1 g

(c) 2 g

4.

(d) 6 g

The half-life of $^{90}_{38} \mathrm{Sr}~\mathrm{is}~20~\mathrm{years}.$ If its sample having initial

activity of 8000 dis/min is taken, what would be its activity

- 14. When radium atom, which is placed in II group, loses an α - particle, a new element is formed which should be placed in group
- after 80 years (a) 500 dis/min

(c) 1000 dis/min

(b) 800 dis/min

(b) First (d) Zero

(d) 1600 dis/min

(c) Fourth

(a) Second

(b) 3

(d) 17

- 15. $_{92}U^{235}$ belongs to group III B of periodic table. If it loses one $\, \alpha \,$ -particle, the new element will belong to group
 - (a) IB

group

(a) 2

(c) 16

- (b) IA
- (c) III B

(d) VB

- 5. A radioactive isotope has a half-life of 10 days. If today 125 mg is left over, what was its original weight 40 days earlier
 - (a) 2g

(b) 600 mg

(c) 1 g

(d) 1.5 g

6.		substance is 120 days. After 480	16.	When a radioactive sub its disintegration per sec		m, the rate of
	days, $4 g$ will be reduced (a) 2	(b) 1		(a) Increases considera	bly	
	(c) 0.5	(d) 0.25		(b) Is not affected		
7.		t 226 and a half-life of 1600 years.		(c) Suffers a slight deci	ease	
		ations produced per second from		(d) Increases only if the	products are gaseous	
	1g are		17.	The half-life period of a		
	(a) 4.8×10^{10}	(b) 9.2×10^6	17.	After how much time 15	g will decay from 16	
	(c) 3.7×10^{10}	(d) Zero		(a) 140 days	(b) 560 days	
8.	In the case of a radio iso	tope the value of $T_{1/2}$ and λ are		(c) 280 days	(d) 420 days	
	identical in magnitude. The	ne value is	18.	The half-life period $t_{1/2}$	of a radioactive eleme	nt is N years.
	(a) 0.693	(b) $(0.693)^{1/2}$		The period of its comple	ete decay is	
	(c) 1/0.693	(d) (0.693) ²		(a) N^2 years	(b) 2N years	
9.		sodium is 15.0 hours. How many		(c) $\frac{1}{2}N^2$ years	(d) Infinity	
		64 gms of sodium to decay one-	19.	The half-life period of a	radioactive material i	s 15 minutes.
	eighth of its original value		17.	What % of radioactivity		
	(a) 3	(b) 15		minutes		
	(c) 30	(d) 45		(a) 10 %	(b) 12.5%	
10.		a^{226} is $1.37{ imes}10^{-11}{ m s}^{-1}$. A sample		(c) 15%	(d) 17.5%	
	of Ra^{226} having an activitations	ity of 1.5 millicurie will contain	20.	The half-life for decay o	f ^{14}C by eta -emission i	s 5730 years.
	(a) 4.1×10^{18}	(b) 3.7×10 ¹⁷		The fraction of ^{14}C decold, would be	ays, in a sample that is	22,920 years
	(c) 2.05×10^{15}	(d) 4.7×10^{10}		(a) 1/8	(b) 1/16	
11.	A wood piece is 11460 ye	ars old. What is the fraction of ^{14}C		(c) 7/8	(d) 15/16	
	activity left in the piece (Ha	alf-life period of ¹⁴ C is 5730 years)	21.	A radioactive nuclide 2		of 1.00×10 ⁵
	(a) 0.12	(b) 0.25		disintegration $s^{-1}g^{-1}$.		
	(c) 0.50	(d) 0.75		3.70×10^{10} disintegrat		
12.		tive substance is increased three		millicurie g^{-1} ($mcig^{-1}$		vity of A in
	times, the number of at would	oms disintegrated per unit time		(a) 0.027	(b) 0.270×10	-5
	(a) Be double	(b) Be triple		(c) 0.00270	(d) 0.000270	
	(c) Remain one third	(d) Not change	22.	and the second s		1D - 1
13.		toms are present at time t , the	22.	The half lives of two rac 2 min. respectively. Ec		
	following expression will b			separately and allowed		
	(a) n_t/t	(b) $\ln n_t/t$		be the ratio of weights		
	235- 01	and the second s		(a) 1:1	(b) 5:4	
	(c) $d \ln n_t / dt$	(d) $t.n_t$		(c) 1:2	(d) 1:3	
14.	The half-life of a radioactive will be left after 4 hours in	we element is 10 hours. How much $1\ g$ atom sample	23.	A radioactive element of Its half-life period is 30		
	(a) 45.6×10^{23} atoms	(b) 4.56×10^{23} atoms		the permissible value; a		
	(c) 4.56×10^{24} atoms	(d) 4.56×10^{25} atoms		enter the room		
15.	2 g of a radioactive samp	le having half life of 15 days was		(a) 1000 days	(b) 300 days	
	synthesised on 1st Jan 200	09. The amount of the sample left		(c) 10 days	(d) 100 days	
	behind on 1st March, 2009	9 (including both the days)	24.	S		ice to 125 mg
	(a) 0.125 <i>g</i>	(b) 1 g		after 24 hours. The half-		
	(c) 0.5 g	(d) 0 g		(a) 8 hours	(b) 24 hours	
				(c) 6 hours	(d) 4 hours	
					Nuclear	Chemistry 54

	giv	en amount of the substanc	e dis	sintegrates in 30 minutes
	(a)	7.5 min		25 min
	(c)	20 min	(d)	15 min
26.	The	e radioisotope of hydroge	en ha	as a half-life of 12.33 v.
	Wh	at is the age of an old bott	le of	wine whose ${}_{1}^{3}H$ radiation
	is 1	0% of that present in a ne	w bo	ottle of wine
	(a)	41 y	(b)	123.3 y
	(c)	1.233 y		410 y
27.	109	g of a radioactive substan	nce i	s reduced to 1.25g after
	15	days. Its 1kg mass will red	duce	to 500g in
		500 days	(b)	125 days
		25 days		5 days
28.	Wh day	at will be half-life period on $N = 0.798 N_0$	of a n	ucleus if at the end of 4.2
	(a)	15 days	(b)	10 days
	(c)	12.83 days		20 days
29.	If 2 hal	0.0 g of a radioactive substance of $1 g$ sample is		
	(a)	7 days	(b)	14 days
	(c)	28 days	(d)	35 days
30.	Hal	f-life period of a radioac ch time will it take in its 99	tive 9% d	element is 10.6 yr. How ecomposition
	(a)	7046 yr	(b)	7.046 yr
	(c)	704.6 yr	(d)	70.4 yr
31.	Hal % in	f-life of a radioactive subst n 60 minutes, will be	ance	which disintegrates by 75
	(a)	120 min	(b)	30 min
	(c)	45 min	(d)	20 min
32.	Hal	f-life of a radioactive disin	tegra	tion $(A \rightarrow B)$ having rate
	con	stant $231s^{-1}$ is		
	(a)	$3.0\!\times\!10^{-2}~\text{s}$	(b)	3.0×10^{-3} s
	(c)	$3.3 \times 10^{-2} \ s$	(d)	$3.3 \times 10^{-3} \text{ s}$
33.	only	activity of carbon-14 in a 12.5%. If the half-life parts, the age of the piece of	perio	d of carbon-14 is 5760
	(a)	17.281×10^2 years	(b)	172.81×10^2 years
28000	(c)	1.7281×10^2 years	(d)	1728.1×10^2 years
34.		ood specimen from an a		
	6 ¹⁴ C	activity of 5.0 counts/m	in/gn	of carbon. What is the

age of the specimen $(t_{1/2} \text{ for } {}^{14}_6 C \text{ is 5000 years})$ and a

(b) 9.85×10^4 years

(d) 0.85×10^4 years

freshly cut wood gives 15 counts/min/g of carbon

(a) 5.78×10^4 years

(c) 7.85×10^3 years

What is the half-life of a radioactive substance if 75% of a

A radioactive element has a half-life of 20 minutes. How much time should elapse before the element is reduced to $\frac{1}{8}th$ of the original mass (a) 40 min (b) 60 min

(c) 80 min

(d) 160 min

36. The activity of a radioactive nuclide is disintegrations per minute (dpm). After 23.03 minutes, its activity is reduced to 2×10^6 dpm. What is the average life (in min) of this nuclide

(a) 1000

(b) 10

(c) 1

(d) 0.1

The age of a specimen, t, is related to the daughter/parent ratio 37. D/P by the equation

(a)
$$t = \frac{1}{\lambda} \ln \frac{D}{P}$$

(a) $t = \frac{1}{\lambda} \ln \frac{D}{P}$ (b) $t = \frac{1}{\lambda} \ln \left(1 + \frac{P}{D} \right)$

(c)
$$t = \frac{1}{\lambda} \ln \left(1 + \frac{D}{P} \right)$$
 (d) $t = \frac{1}{\lambda} \ln \left(2 + \frac{P}{D} \right)$

38. The half-life period of Uranium is 4.5 billion years. After 9.0 billion years, the number of moles of Helium liberated from the following nuclear reaction will be

$$_{92}U^{238} \rightarrow _{90}Th^{234} + _{2}He^{4}$$

(a) 0.75 mole

(b) 1.0 mole

(c) 11.2 mole

(d) 22.4 mole

8g of the radioactive isotope, cesium-137 were collected 39. on February 1 and kept in a sealed tube. On July 1, it was found that only 0.25g of it remained. So the half-life period of the isotope is

(a) 37.5 days

(b) 30 days

(c) 25 days

(d) 50 days

The $\,C^{14}\,\mathrm{to}\,\,C^{12}\,$ ratio in a wooden article is 13% that of the fresh wood. Calculate the age of the wooden article. Given that the half-life of C^{14} is 5770 years

(a) 16989 years

(b) 16858 years

(c) 15675 years

(d) 17700 years

 $T_{1/2}$ of C^{14} isotope is 5770 years. Time after which 72% of isotope left is

(a) 2740 years

(b) 274 years

(c) 2780 years

(d) 278 years

A piece of wood was found to have C^{14}/C^{12} ratio 0.7 times that in a living plant. The time period when the plant died is (Half-life of $C^{14} = 5760 \, \text{ur}$)

(a) 2770 ur

(b) 2966 yr

(c) 2980 yr

(d) 3070 ur

- The radium and uranium atoms in a sample of uranium 43. mineral are in the ratio of $1:2.8\times10^6$. If half-life period of radium is 1620 years, the half-life period of uranium will be
 - (a) 45.3×10^9 years
- (b) 45.3×10^{10} years
- (c) 4.53×10^9 years
- (d) 4.53×10^6 years
- A sample of rock from moon contains equal number of 44. atoms of uranium and lead ($t_{1/2}$ for $U = 4.5 \times 10^9$ years). The age of the rock would be
 - (a) 9.0×10^9 years
- (b) 4.5×10^9 years
- (c) 13.5×10^9 years
- (d) 2.25×10^9 years
- Radioactivity of a sample (Z = 22) decreases 90% after 10 45. years. What will be the half-life of the sample
 - (a) 5 years
- (b) 2 years
- (c) 3 years
- (d) 10 years
- 46. Two radioactive elements X and Y have half–lives of 6 min and 15 min respectively. An experiment starts with 8 times as many atoms of Y as X. How long it takes for the number of atoms of X left equals the number of atoms of Y left
 - (a) 6 min
- (b) 12 min
- (c) 48 min
- (d) 30 min
- (e) 24 min
- 47. The decay profiles of three radioactive species A, B, and C are given below

These profiles imply that the decay constants k_A, k_B and k_C follow the order

- (a) $k_A > k_B > k_C$ (b) $k_A > k_C > k_B$
- (c) $k_B > k_A > k_C$
- (d) $k_C > k_B > k_A$

Artificial Transmutation

- 1. The age of most ancient geological formation is estimated
 - (a) Potassium Argon method
 - (b) Carbon 14 dating method
 - (c) Radium Silicon method
 - (d) Uranium Lead method
- The reaction $_{13}AI^{27} + _{2}He^{4} \rightarrow _{14}Si^{30} + _{1}H^{1}$ is of the type 2.
 - (a) Nuclear fusion
- (b) Nuclear fission
- (c) Chemical reaction
- (d) Transmutation

- The first artificial disintegration of an atomic nucleus was 3. achieved by
 - (a) Geiger
- (b) Wilson
- (c) Madame curie
- (d) Rutherford
- (e) Soddy
- Radioactive carbon dating was discovered by 4.
 - (a) W.F. Libby
- (b) G.N. Lewis
- (c) J. Willard Gibbs
- (d) W. Nernst
- A possible material for use in the nuclear reactors as a fuel 5.
 - (a) Thorium
- (b) Zirconium
- (c) Beryllium
- (d) Plutonium
- Which one of the following radioactive isotope is used in the 6. treatment of blood cancer
 - (a) P^{32}

- (b) I^{131}
- (c) Co⁶⁰
- (d) Na²⁴
- To determine the masses of the isotopes of an element 7. which of the following techniques is useful
 - (a) The acceleration of charged atoms by an electric field and their subsequent deflection by a variable magnetic field
 - (b) The spectroscopic examination of the light emitted by vaporised elements subjected to electric discharge
 - (c) The photographing of the diffraction patterns which arise when X-rays are passed through crystals
 - (d) The bombardment of metal foil with alpha particles
- If two light nuclei are fused together in nuclear reaction, the 8. average energy per nucleon
 - (a) Increases
- (b) Cannot be determined
- (c) Remains same
- (d) Decreases
- 9. Match List I and List II and choose right one by using code given in list

List I (Nuclear reactor

List II (Used substance)

Component)

- (A) Uranium
- 1. Moderator Control rods
- (B) Graphite
- Fuel rods
- (C) Boron
- Coolent
- (D) Lead
- (E) Sodium

Code:

- 1 2 3
- C (a) B A
- (b) B C A E
- E (c) C В
- В (d) C D Α
- (e) D C A
- When nuclear energy is intended to be harnessed for 10. generation of electricity, potentially destructive neutron released in a nuclear reactor are absorbed by

4

E

- (a) Long rods of Cd
- (b) Heavy water
- (c) Cubical blocks of steel
- (d) Both (a) and (c)

11.	The reaction ${}_1H^2 + {}_1H^3 \rightarrow {}_2He^4 + {}_0n^1 + \text{energy}$
	represents
	(a) Nuclear fission
	(b) Nuclear fusion
	(c) Artificial disintegration
	(d) Transmutation of element
12 .	The radioactive isotope $^{60}_{27}Co$ which is used in the
	treatment of cancer can be made by (n, p) reaction. For this
	reaction the target nucleus is
	(a) ${}^{60}_{28}Ni$ (b) ${}^{60}_{27}Co$
	(c) ${}^{59}_{28}Ni$ (d) ${}^{59}_{27}Co$
13 .	Which is least effective for artificial transmutation
	(a) Deuterons (b) Neutrons
	(c) α -particles (d) Protons
14.	C-14 is used in carbon dating of dead objects because
	(a) Its half-life is 10^3 years
	(b) Its half-life is 10^4 years
	(c) It is found in nature abundantly and in definite ratio
1-	(d) It is found in dead animals abundantly
15.	Which of the following cannot be accelerated
	(a) α -particle (b) β -particle (c) Protons (d) Neutrons
16.	(c) Protons (d) Neutrons Which metal Aprons are worn by radiographer to protect
	him from radiation
	(a) Mercury coated apron (b) Lead apron
	(c) Copper apron (d) Aluminimised apron
17.	When a slow neutron goes sufficiently close to a U^{235}
	nucleus, then the process which takes place is
	(a) Fusion of U^{235} (b) Fission of U^{235}
10	(c) Fusion of neutron (d) First (a) then (b)
18.	Sulphur-35 (34.96903 amu) emits a β – particle but no γ – rays, the product is chlorine-35 (34.96885 amu). The
	maximum energy emitted by the β – particle is
	(a) 0.016767 MeV (b) 1.6758 MeV
	(c) 0.16758 MeV (d) 16.758 M
6.	Isotopes-Isotones and Nuclear Isomers
1.	In treatment of cancer, which of the following isotope is used
	(a) $_{53}I^{131}$ (b) $_{15}P^{32}$
	(c) $_{27}Co^{60}$ (d) $_{1}H^{2}$
2.	
۷.	Isotope of uranium used in atomic bomb is
	(a) $\frac{237}{92}U$ (b) $\frac{238}{92}U$
	(c) $\frac{239}{92}U$ (d) $\frac{235}{92}U$
3.	An isotope of 'parent' is produced, when its nucleus loses
	(a) One α -particle
	(b) One β -particle

(c) One α and two β -particles

(d) One β and two α - particles

- Which of the following radioactive isotope is used for hyperthyroidism
 - (a) 60 Co
- (b) ^{32}P
- (c) ^{131}I
- (d) 14 C
- 5. Which of the following statement is false
 - (a) In chlorine gas, the ratio of Cl^{35} and Cl^{37} is 1:3
 - (b) The hydrogen bomb is based on the principle of nuclear fusion
 - (c) The atom bomb is based on the principle of nuclear fission
 - (d) The penetrating power of a proton is less than that of an electron
- **6.** Which among the following isotope is not found in natural uranium
 - (a) $_{92}U^{234}$
- (b) $_{92}U^{235}$
- (c) $_{92}U^{238}$
- (d) $_{92}U^{239}$
- 7. Which of the following species is isotonic with $_{37}Rb^{86}$
 - (a) $_{36}Kr^{84}$
- (b) $_{37}Rb^{85}$
- (c) $_{38}Sr^{87}$
- (d) $_{39}Y^{89}$
- 8. Radioactive isotope of hydrogen is
 - (a) Tritium
- (b) Deuterium
- (c) Para hydrogen
- (d) Ortho hydrogen
- 9. Isotopes were discovered by
 - (a) Aston
- (b) Soddy
- (c) Thomson
- (d) Mullikan
- 10. An ordinary oxygen contains
 - (a) Only O-16 isotopes
 - (b) Only O-17 isotopes
 - (c) A mixture of O-16 and O-18 isotopes
 - (d) A mixture of O-16, O-17 and O-18 isotopes
- 11. Two atoms are said to be isobars if
 - (a) They have same atomic number but different mass number
 - (b) They have same number of electrons but different number of neutrons
 - (c) They have same number of neutrons but different number of electrons
 - (d) Sum of the number of protons and neutrons is same but the number of protons is different
- **12.** ${}_{6}^{13}C$ and ${}_{7}^{14}N$ are the
 - (a) Isotopes
- (b) Isotones
- (c) Isobars
- (d) Isosteres

7. IIT-JEE/ AIEEE

- 1. $^{23}_{11}Na$ is the more stable isotope of Na. Find out the process by which $^{24}_{11}Na$ can undergo radioactive decay [2003]
 - (a) β^- emission
- (b) α emission
- (c) β^+ emission
- (d) K electron capture

2. If $_{92}U^{235}$ nucleus absorbs a neutron and disintegrates in $_{54}Xe^{139}$, $_{38}Sr^{94}$ and X, then what will be the product X

[2010]

- (a) α -particle
- (b) β -particle
- (c) 2-neutrons
- (d) 3-neutrons
- 3. The radionuclide $^{234}_{90}Th$ undergoes two successive β -decays followed by one α -decay. The atomic number and the mass number respectively of the resulting radionuclide are [2003]
 - (a) 92 and 234
- (b) 94 and 230
- (c) 90 and 230
- (d) 92 and 230
- **4.** Bombardment of aluminium by α -particle leads to its artificial disintegration in two ways, (I) and (II) as shown. Products X, Y and Z respectively are, [2011]

Products X, Y and Z resp
$$\begin{array}{c}
27 \\
13 \\
AI
\end{array}
\longrightarrow
\begin{array}{c}
(ii) \\
15 \\
15 \\
P + Y
\end{array}$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\downarrow$$

$$\uparrow$$

- (a) Proton, neutron, positron
- (b) Neutron, positron, proton
- (c) Proton, positron, neutron
- (d) Positron, proton, neutron
- The radiations from a naturally occurring radio element, as seen after deflection in a magnetic field in one direction, are

[1984]

- (a) Definitely α -rays
- (b) Definitely β -rays
- (c) Both α and β -rays
- (d) Either α or β -rays
- 6. A photon of hard gamma radiation knocks a proton out of $^{24}_{12}Mg$ nucleus to form [2005]
 - (a) The isotope of parent nucleus
 - (b) The isobar of parent nucleus
 - (c) The nuclide $^{23}_{11}Na$
 - (d) The isobar of $^{23}_{11}Na$
- 7. The reaction which disintegrates neutron is [1988]

(a)
$$_{96}Am^{240} + _{2}He^4 \rightarrow _{97}Bk^{244} + _{+1}e^0$$

- (b) $_{15}P^{30} \rightarrow {}_{14}Si^{30} + {}_{1}e^{0}$
- (c) ${}_{6}C^{12} + {}_{1}H^{1} \rightarrow {}_{7}N^{13}$
- (d) $_{13}AI^{27} + _{2}He^4 \rightarrow _{15}P^{30}$
- **8.** Consider the following nuclear reactions,

$$^{238}_{92}M \rightarrow ^{\times}_{y}N + 2^{4}_{2}He$$

$$_{y}^{x}N \rightarrow _{B}^{A}L + 2\beta^{+}$$

The number of neutrons in the element L is [2004]

- (a) 140
- (b) 144
- (c) 142
- (d) 146
- 9. If uranium (mass no. 238 and atomic no. 92) emits α particle, the product has mass number and atomic number [1981]
 - (a) 234, 90
- (b) 236, 92
- (c) 238, 90
- (d) 236, 90

10. The half-life period of a radioactive element is 140 days. After 560 days, one gram of the element will reduce to

[1986]

- (a) 1/2g
- (b) 1/4g
- (c) 1/8g
- (d) 1/16g
- 11. The half-life of a radioisotope is four hours. If the initial mass of the isotope was 200 g, the mass remaining after 24 hours undecayed is
 - (a) 3.125 g
- (b) 2.084 g
- (c) 1.042 g
- (d) 4.167 g
- **12.** The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were 256 g, the mass of it remaining undecayed after 18 hours would be **[2003]**
 - (a) 4.0 g
- (b) 8.0 g
- (c) 12.0 g
- (d) 16.0 g
- 13. If half-life of a substance is 5 yrs, then the total amount of substance left after 15 years, when initial amount is grams is [2002]
 - (a) 16 grams
- (b) 2 grams
- (c) 32 grams
- (d) 8 grams
- 14. A freshly prepared radioactive source of half-life 2 hours emits radiations of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is [1988]
 - (a) 6 hours
- (b) 12 hours
- (c) 24 hours
- (d) 128 hours
- **15.** The decay constant of a radioactive sample is λ' . The half-life and mean life of the sample are respectively [1989]
 - (a) $\frac{1}{\lambda}, \frac{\ln 2}{\lambda}$
- (b) $\frac{\ln 2}{\lambda}, \frac{1}{\lambda}$
- (c) $\lambda \ln 2, \frac{1}{\lambda}$
- (d) $\frac{\lambda}{\ln 2}, \frac{1}{\lambda}$
- **16.** In the transformation of ${}^{238}_{92}U$ to ${}^{234}_{92}U$, if one emission is an α -particle, what should be the other emission (s) [2006]
 - (a) Two β^-
- (b) Two β^- and one β^+
- (c) One β^- and one γ
- (d) One β^+ and one β^-
- 17. Given that the abundances of isotopes ⁵⁴Fe, ⁵⁶Fe and ⁵⁷Fe are 5%, 90% and 5%, respectively, the atomic mass of Fe is [2009]
 - (a) 55.85
- (b) 55.95
- (c) 55.75
- (d) 56.05
- **18.** A positron is emitted from $^{23}_{11}Na$. The ratio of the atomic mass and atomic number of the resulting nuclide is [2007]
 - (a) 22/10
- (b) 22/11
- (c) 23/10
- (d) 23/12
- Which of the following nuclear reactions will generate an isotope [2007]
 - (a) Neutron particle emission
 - (b) Positron emission
 - (c) α particle emission
 - (d) β particle emission

20.	The sum of the number of neutrons and proton in the radio isotope of hydrogen is [1986]	7.	A nuclide of an alkaline earth metal undergoes radioact decay by emission of the α – particles in succession. I group of the periodic table to which the resulting daugh	Γhe
	(a) 6 (b) 5		element would belong is [200]	
	(c) 4 (d) 3		(a) <i>Gr.</i> 14 (b) <i>Gr.</i> 16	00,
21.	The triad of nuclei that is isotonic is [1988]		(c) Gr.4 (d) Gr.6	
	(a) ${}_{6}C^{14}$, ${}_{7}N^{15}$, ${}_{9}F^{17}$ (b) ${}_{6}C^{12}$, ${}_{7}N^{14}$, ${}_{9}F^{19}$	8.	The radioisotope, tritium $\binom{3}{1}H$ has a half-life of 12.3 years	s. If
	(c) ${}_{6}C^{14}$, ${}_{7}N^{14}$, ${}_{9}F^{17}$ (d) ${}_{6}C^{14}$, ${}_{7}N^{14}$, ${}_{9}F^{19}$		the initial amount of tritium is 32 mg, how many milligra	
00			of it would remain after 49.2 years [200	
22.	The most abundant elements by mass in the body of a healthy human adult are: Oxygen (61.4%); Carbon		(a) 8 mg (b) 1 mg	
	(22.9%), Hydrogen (10.0%); and Nitrogen (2.6%). The		(c) 2 mg (d) 4 mg	
	weight which a 75 kg person would gain if all ${}^{1}H$ atoms are	9.	Half-life for radioactive C^{14} is 5760 years. In how ma	any
	roplaced by 2 H atoms :		years $200mg$ of C^{14} sample will be reduced to $25mg$	
	[2017]		[19	95]
	(1)		(a) 11520 years (b) 23040 years	
	(2) 10 kg		(c) 5760 years (d) 17280 years	
8.	NEET/ AIPMT/ CBSE-PMT	10.	The half-life of ${}_6C^{14}$, if its decay constant is 6.31×10^{-4}	is
1.	In the reaction $_1H^2 + _1H^3 \rightarrow _2He^4 + _0n^1$; if the binding		[20	
	energies of $_1H^2$, $_1H^3$ and $_2He^4$ are respectively a,b and		(a) 1098 yr (b) 109.8 yr	
	c (in MeV), then energy released in this reaction is [2005]		(c) 10.98 yr (d) 1.098 yr	
	(a) $a+b-c$ (b) $c+a-b$	11.	Carbon-14 dating method is based on the fact that [19	97]
	(c) $c-a-b$ (d) $a+b+c$		(a) Carbon-14 fraction is the same in all objects	
2 .	In a radioactive decay, an emitted electron comes from		(b) Carbon-14 is highly insoluble	
	[1994]		(c) Ratio of carbon-14 and carbon-12 is constant	
	(a) Nucleus of the atom		(d) All of these	
	(b) Inner orbital of the atom	9.	AIIMS	
	(c) Outermost orbit of the atom	1.	Which of the following nuclear transformation is (n, p) ty	·ma
	(d) Orbit having principal quantum number one			-
3.	What happens when α -particle is emitted [1989]		(a) $_{3}Li^{7} + _{1}H^{1} \longrightarrow {}_{4}Be^{7} + _{0}n^{1}$	5 3]
	(a) Mass number decreases by 12 unit, atomic number		0 1 4 0	
	decreases by 4 unit (b) Mass number decreases by 4 unit, atomic number		(b) $_{33}As^{75} + _{2}He^{4} \longrightarrow _{35}Br^{78} + _{0}n^{1}$	
	decreases by 2 unit		(c) $_{83}Bi^{209} + _{1}H^{2} \longrightarrow _{84}Po^{210} + _{0}n^{1}$	
	(c) Only mass number decreases		(d) $_{21}Sc^{45} + _{0}n^{1} \longrightarrow _{20}Ca^{45} + _{1}H^{1}$	
	(d) Only atomic number decreases	2.	Will also War also City	
4.	Number of neutrons in a parent nucleus X , which gives	2.	What is X in the following nuclear reaction [198]	33]
	$_7N^{14}$ nucleus after two successive eta emissions would be		$_{7}N^{14} + _{1}H^{1} \longrightarrow _{8}O^{15} + X$	
	[1998]		(a) $_{+1}e^0$ (b) $_0n^1$	
	(a) 9 (b) 8		(c) γ (d) $_{-1}e^0$	
	(c) 7 (d) 6	3.	1111 : 1 :	.=.
5 .	After the emission of one $lpha$ -particle followed by one eta -	0.	Which is not emitted by radioactive substance [199	7]
	particle from the atom of $_{92}X^{238}$, the number of neutrons		(a) α -rays (b) β -rays	
	in the atom will be [1995]		(c) Positron (d) Proton	
	(a) 142 (b) 146	4.	TI D 226 .	
	(c) 144 (d) 143	7.		IJ
6.	The radioactive decay of $_{35}X^{88}$ by a beta emission		(a) <i>n</i> -mesons (b) <i>u</i> -mesons	
	produces an unstable nucleus which spontaneously emits a	_	(c) Radioactive (d) Non-radioactive	
	neutron. The final product is [2001]	5 .	$_6C^{12}$ and $_1T^3$ are formed in nature due to the nuclear	ar
	(a) $_{37}X^{88}$ (b) $_{35}Y^{89}$		reaction of neutron with [2008]	8]
	7.0		(a) N^{14}	

(a) $_{7}N^{14}$

(c) ₂He⁴

(c) $_{34}Z^{88}$

(d) $_{36}W^{87}$

(b) $_{6}C^{13}$

(d) $_3Li^6$

6.	The compound used in enrichment of uranium for	(c)	If asserti	on is true but reason is false.
	nuclear power plant is [2006]	(d)	If the as	sertion and reason both are false.
	(a) U_3O_8 (b) UF_6 (c) $UO_2(NO_3)_2$ (d) UCI_4	(e)		ion is false but reason is true.
7 .	α -particles can be detected using [2005] (a) Thin aluminium sheet (b) Barium sulphate	1.	Assertion	: An example of K-capture is $^{133}_{56}Ba + e^- \rightarrow ^{133}_{55}Cs + X - ray$.
8.	(c) Zinc sulphide screen (d) Gold foil ^{238}U emits 8 $lpha$ -particles and 6 eta -particles. The neutron/		Reason	 The atomic number decreases by one unit as result of K-capture.
	proton ratio in the product nucleus is [2005] (a) 60/41 (b) 61/40	2.	Assertion	: Breeder reactor produces fissile $_{94}Pu^{239}$ from non-fissile uranium.
9.	(c) 62/41 (d) 61/42 The highest binding energy per nucleon will be for [2001]		Reason	 A breeder reactor is one that produces more fissionable nuclei than it consumes.
	(a) Fe (b) H_2 (c) O_2 (d) U	3.	Assertion	 The activation energies for fusion reactions are very low.
10.	$_{84}Po^{210} \longrightarrow {}_{82}Pb^{206} + {}_{2}He^4$. From the above equation, deduce the position of polonium in the periodic		Reason	: They require very low temperature to overcome electrostatic repulsion between the nuclei.
	table (lead belongs to group IV A) [1980] (a) II A (b) IV B (c) VI B (d) VI A	4.	Assertion	 The archaeological studies are based or the radioactive decay of carbon-14 isotope.
11.	The amount of $_{53}I^{128}$ ($t_{1/2}=25$ minutes) left after 50 minutes will be [1982]		Reason	: The ratio of C-14 to C-12 in the animals and plants is same as that in the atmosphere.
12.	(a) One – half (b) One – third (c) One – fourth (d) Nothing Half life of radium is 1580 up the average life will be 11000.	5.	Assertion	: The binding energy per nucleon, for nuclei with atomic mass number $A > 100$, decreases with A .
12.	Half-life of radium is 1580 yr. Its average life will be [1999] (a) 2.5×10^3 yr (b) 1.832×10^3 yr		Reason	: The nuclear forces are weak for heavier nuclei. [AIIMS 2006]
13.	(c) $2.275 \times 10^3 yr$ (d) $8.825 \times 10^2 yr$ Wooden article and freshly cut tree are show activity of 7.6	6.	Assertion	: A nuclear binding energy per nucleon is in the order ${}^9_4Be>^7_3Li>^4_2He$.
	and $15.2 \mathrm{min}^{-1}g^{-1}$ of carbon ($t_{1/2} = 5760 \mathrm{years}$) respectively. The age of the artifact is [1980] (a) 5760 years		Reason	 Binding energy per nucleon increases linearly with difference in number of neutrons and protons.
	(a) 5760 years (b) $5760 \times \frac{15.2}{7.6} \text{ years}$	7.	Assertion	 Nuclear fission is always accompanied by release of energy.
	(c) $5760 \times \frac{7.6}{15.2}$ years		Reason	: Nuclear fission is a chain process. [AIIMS 1994]
14.	15.2 (d) 5760×(15.2-7.6) years A substance used as a moderator in nuclear reactors is	8.	Assertion	 Protons are more effective than neutrons of equal energy in causing artificial disintegration of atoms.
	[2001] (a) Cadmium (b) Uranium-235		Reason	: Neutrons are neutral so they penetrate the nucleus. [AIIMS 1998]
15.		9.	Assertion	: A beam of electrons deflect more than a beam of α -particles in an electric field.
10	(a) Proton (b) Neutron (c) Proton and neutron (d) Nucleon Assertion & Reason		Reason	: Electrons possess negative charge while α -particles possess positive charge. [AIIMS 2002]
160	ad the assertion and reason carefully to mark the correct option	10.	Assertion	: $^{22}_{11}Na$ emits a positron giving $^{22}_{12}Mg$.
	of the options given below: If both assertion and reason are true and the reason is the		Reason	: In β^+ emission neutron is transformed into proton. [AIIMS 1994]
/1 \	correct explanation of the assertion.	11.	Assertions Reason	 Lead is most effective in shielding radiation. It is very stable, and many radio-active
(b)	If both assertion and reason are true but reason is not the correct explanation of the assertion.		reason	reactions finally yield lead. [MP PMT 2008]

21. Nuclear Chemistry - Answers Keys

_	Nucl		200						
1	a	2	d	3	d	4	d	5	b
6	a	7	b	8	b	9	a	10	b
11	С	12	ь	13	a	14	С	15	a
16	d	17	С	18	d	19	b	20	a
21	е	22	С						
2. F	Radio	oactiv	ity a	nd α ,	βan	ıd _/ - F	Rays		
1	a	2	С	3	С	4	С	5	a
6	a	7	С	8	a	9	d	10	b
11	a	12	d	13	С	14	b	Š.	
	d	es acem	of ent l		ALC: U		an		irou
					ouoi		all	a G	rou
1	d	acem	ent l		a	4	d	5	c
1 6	d b	acem 2 7	b a	3 8	ALC: U				
1 6 11	d b	2 7 12	ent l	_aw 3	a	4	d	5	С
1 6	d b	acem 2 7	b a	3 8	a d	4 9	d b	5 10	c a
1 6 11 16	d b b	2 7 12 17	b a b	3 8 13	a d c b	4 9 14	d b	5 10	c a
1 6 11 16	d b b	2 7 12 17	b a b	3 8 13 18	a d c b	4 9 14	d b	5 10	c a
1 6 11 16	d b b	2 7 12 17	b a b a	3 8 13 18	a d c b	4 9 14	d b d	5 10 15	c a c
1 6 11 16	d b b ate	2 7 12 17 of Dec	b a b a cay a	3 8 13 18 and H	a d c b	4 9 14 fe	d b d	5 10 15	c a c
1 6 11 16 1. R	d b b d	2 7 12 17 of Dec	b a b a cay a d c	3 8 13 18 and H	a d c b alf-li a	4 9 14 fe 4 9	d b d	5 10 15 5 10	c a c
1 6 11 16 R	d b b d d b	2 7 12 17 of Dec	b a b a cay a d c b	3 8 13 18 and H	a d c b alf-li a b c	4 9 14 fe 4 9 14	d b d a d b	5 10 15 5 10 15	c a c
1 6 11 16 1 6 11 16	d b b ate c	2 7 12 17 of Dec 2 7 12 17	b a b a d c b b	3 8 13 18 and H	a d c b alf-li a c d	4 9 14 fe 4 9 14 19	d b d d b b b	5 10 15 5 10 15 20	c a c
1 6 11 16 1 6 11 16 21	d b b c	2 7 12 17 of Dec 2 7 12 17 22	b a b a cay a d c b b	3 8 13 18 and H 3 8 13 18 23	a d c b alf-li a c d d	4 9 14 fe 4 9 14 19 24	d b d b b a	5 10 15 5 10 15 20 25	c a c a a a d d
1 6 11 16 1 6 11 16 21 226	d b b c a	2 7 12 17 of Dec 2 7 12 17 22 27	b a b a cay a d c b b d	3 8 13 18 and H 3 8 13 18 23 28	a d c b alf-li a b c d d	4 9 14 fe 4 9 14 19 24 29	d b d b b a a	5 10 15 5 10 15 20 25 30	a a a d d d

Artificial Transmutation

7

d

5

10

4

d

d

11	ь	12	a	13	С	14	С	15	d
16	ь	17	b	18	С				
6. I	soto	pe-Iso	otone	es and	d Nu	clear	Ison	ners	
1	С	2	d	3	С	4	С	5	a
6	d	7	С	8	a	9	b	10	d
11	d	12	b						
7. II	IT-JE	E/ All	EEE						
1	a	2	d	3	С	4	a	5	d
6	С	7	d	8	b	9	a	10	d
11	a	12	a	13	d	14	b	15	b
16	a	17	b	18	С	19	a	20	d
21	a	22	b				200		
8. N	IEET/	AIPN	/IT/ C	BSE-	РМТ				
1	С	2	a	3	b	4	a	5	d
6	d	7	b	8	С	9	d	10	a
11	С								
9. A	IIMS								
1	d	2	С	3	d	4	С	5	a
6	a	7	С	8	С	9	a	10	d
11	с	12	c	13	a	14	d	15	a
10. <i>A</i>	Sser	tion &	& Re	ason					
6. 7.61	ь	2	a	3	d	4	a	5	С
1	-					_	N. West		
1 6	d	7	ь	8	е	9	b	10	d