Ionic Equilibrium – Multiple Choice Questions 8. #### 1. Electrical Conductors, Arrhenius Theory and Ostwald's Dilution Law - 1. Which of the following acids is stronger than benzoic acid $(K_a = 6.3 \times 10^{-5})$ - (a) $A(K_a = 1.67 \times 10^{-8})$ (b) $B(pK_a = 6.0)$ - (c) $C(pK_a = 4.0)$ - (d) $D(K_a = 1.0 \times 10^{-5})$ - Which will not affect the degree of ionisation - (a) Temperature - (b) Concentration - (c) Type of solvent - (d) Current - The addition of a polar solvent to a solid electrolyte results in - (a) Polarization - (b) Association - (c) Ionization - (d) Electron transfer - A 0.010 M solution of maleic acid, amonoprotic organic acid, is 14% ionised. What is K_a for maleic acid - (a) 2.3×10^{-3} - (b) 2.3×10^{-4} - (c) 2.0×10^{-4} - (d) 2.0×10^{-6} - Which one of the following is the correct quadratic form of the Ostwald's dilution law equation - (a) $\alpha^2 C + \alpha K K = 0$ - (b) $\alpha^2 C \alpha K K = 0$ - (c) $\alpha^2 C \alpha K + K = 0$ - (d) $\alpha^2 C + \alpha K + K = 0$ - One litre of water contains 10^{-7} mole hydrogen ions. The degree of ionization in water will be - (a) $1.8 \times 10^{-7}\%$ - (b) $0.8 \times 10^{-9}\%$ - (c) $3.6 \times 10^{-7}\%$ - (d) $3.6 \times 10^{-9}\%$ - 7. For a diprotic acid, which of the following is true for 1st and 2^{nd} ionization constants $(K_{a_1} \text{ and } K_{a_2})$ - (a) $K_{a_1} = K_{a_2}$ - (b) $K_{a_1} > K_{a_2}$ - (c) $K_{a_2} > K_{a_1}$ - (d) $K_{a_2} \geq K_{a_1}$ - **8.** HCIO is a weak acid. The concentration of H^+ ions in 0.1M solution of $HCIO(K_a = 5 \times 10^{-8})$ will be equal to - (a) $7.07 \times 10^{-5} m$ - (b) $5 \times 10^{-9} m$ - (c) $5 \times 10^{-7} m$ - (d) $7 \times 10^{-4} m$ $K_{a_1},\,K_{a_2}\,$ and $\,K_{a_3}\,$ are the respective ionisation constants for the following reactions $$H_0S \rightleftharpoons H^+ + HS^-$$ $$HS^- \rightleftharpoons H^+ + S^{2-}$$ $$H_0S \rightleftharpoons 2H^+ + S^{2-}$$ The correct relationship between K_{a_1} , K_{a_2} , K_{a_3} is - (a) $K_{a_2} = K_{a_1} \times K_{a_2}$ - (b) $K_{a_2} = K_{a_1} + K_{a_2}$ - (c) $K_{a_3} = K_{a_1} K_{a_2}$ - (d) $K_{a_3} = K_{a_1} / K_{a_2}$ - **10.** Accumulation of lactic acid $(HC_3H_5O_3)$, a monobasic acid in tissues leads to pain and a feeling of fatigue. In a $0.10\,M$ aqueous solution, lactic acid is 3.7% dissociates. The value of dissociation constant Ka, for this acid will be - (a) 1.4×10^{-5} - (b) 1.4×10^{-4} - (c) 3.7×10^{-4} - (d) 2.8×10^{-4} - 11. For a concentrated solution of a weak electrolyte $A_x B_y$ of concentration 'C', the degree of dissociation α is given as - (a) $\alpha = \sqrt{K_{eq}/C(x+y)}$ - (b) $\alpha = \sqrt{K_{eq}C/(xy)}$ - (c) $\alpha = (K_{ea} / C^{x+y-1} X^x Y^y)^{1/(x+y)}$ - (d) $\alpha = (K_{eq} / Cxy)$ - (e) $\alpha = (K_{eq}/C^{xy})$ - 12. A weak monobasic acid is 1% ionized in 0.1 M solution at $25^{\circ}C$. The percentage of ionization in its $0.025\,M$ solution is - (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 ## **Acids and Bases** - 1. Would gaseous HCI be considered as an Arrhenius acid - (a) Yes - (b) No - (c) Not known - (d) Gaseous HCI does not exist | : | 2. In the given reaction | n, the oxide of sodium is | 12. According to har | d and soft acid base principle, a hard acid | |-----|-----------------------------------|---|----------------------------------|---| | | $Na_2O + H_2O \rightarrow 2NaO$ | Н | (a) Has low char | rge density | | | (a) Acidic | (b) Basic | (b) Shows prefer | rence for soft bases | | | (c) Amphoteric | (d) Neutral | | ence for donor atoms of low electronegativity | | 3 | H^+ is a | () / Could | (d) Is not polariz | | | | (a) Lewis acid | (b) Lewis base | 13. Which halide of | nitrogen is least basic | | | (c) Bronsted-Lowry base | | (a) NBr_3 | (b) <i>NI</i> ₃ | | 4 | and and be ordered a face | to the of the above | (c) <i>NCl</i> ₃ | (d) <i>NF</i> ₃ | | | (a) I ₂ | (p) <i>I</i> - | 14. Review the equ | ilibrium and choose the correct statemen | | | | | | $\Rightarrow H_3O^+ + CIO_4^-$ | | | (c) I_3^- | (d) None of these | (a) $HCIO_4$ is the | conjugate acid of H_2O | | 5. | Acidity of BF_3 can be ex | xplained on the basis of which of the | | decidate and a second and a second | | | following concepts | | (b) 11 ₃ O is the 6 | conjugate base of H_2O | | | (a) Arrhenius concept | | (c) H_2O is the co | onjugate acid of H_3O^+ | | | (b) Bronsted Lowry cond | ept | (d) CIO_4^- is the c | onjugate base of HClO ₄ | | | (c) Lewis concept | Political exercision | | ssolves in water to give NH_4OH . In thi | | 6. | (d) Bronsted Lowry as w | | reaction water act | | | ٥. | Which of the following is (a) CO | | (a) An acid | (b) A base | | | | (b) SiCl ₄ | (c) A salt | (d) A conjugate base | | | (c) SO ₃ | (d) Zn^{2+} | 16. Accepting the def | inition that an acid is a proton donor, the | | 7. | Which of the following is | the strongest Lewis acid | acid in the followi | ng reaction $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$ i | | | (a) BI_3 | (b) BBr_3 | (a) NH ₃ | (b) H ⁺ | | | (c) BCl ₃ | (d BF_3 | (c) NH ₄ ⁺ | (d) <i>H</i> ₂ <i>O</i> | | 8. | In the reaction $SnCl_2 + 2$ | $Cl^- \to SnCl_4$, Lewis acid is | 17. In the reaction I | $H_2O + HCI \longrightarrow H_3O^+ + CI^-$, the specie | | | (a) SnCl ₂ | (b) <i>CI</i> ⁻ | that acts as Brons | ted base is $H_3O + CI$, the specie | | | (c) SnCl ₄ | (d) None of these | (a) H ₂ O | (b) <i>HCI</i> | | 9. | | ich ion is to be decreased, when | (c) H_3O^+ | | | ٠. | NH ₃ solution is added | ich fon is to be decreased, when | le softmologyou ad- | (d) CI ⁻ | | | (a) <i>OH</i> ⁻ | (b) <i>NH</i> ₄ ⁺ | 18. In the following re | | | | (a) OII | (6) 14114 | $HC_2O_4^- + PO_4^{}$ | $\rightleftharpoons HPO_4^{} + C_2O_4^{}$ | | | (c) H_3O^+ | (d) O_2^- | Which are the two | Bronsted bases | | 10. | Which one is a Lewis acid | | (a) $HC_2O_4^-$ and | $PO_4^{}$ (b) $HPO_4^{}$ and $C_2O_4^{}$ | | | (a) CIF ₃ | (b) H ₂ O | | | | | (c) NH ₃ | (d) None of these | | $HPO_4^{}$ (d) $PO_4^{}$ and $C_2O_4^{}$ | | 11. | Which of the following is L | | HCL UE 1140 | HCI behaves as in the reaction | | | (a) S | (b) : CH ₂ | $HCl + HF \rightarrow H_2^+($ | J+F | | | The second of the second | ,-/ | (a) Weak base | (b) Weak acid | (c) Strong base (c) $(CH_3)_3B$ (d) All of these (d) Strong acid - 20. Which one of the following is called amphoteric solvent - (a) Ammonium hydroxide - (b) Chloroform - (c) Benzene - (d) Water - 21. Self-ionisation of liquid ammonia occurs as, $2NH_3 \rightleftharpoons NH_4^+ + NH_2^-; K = 10^{-10}$. In this solvent, an acid might be - (a) NH₄⁺ - (b) NH₃ - (c) Any species that will form NH₄⁺ - (d) All of these - **22.** The acid having the highest pK_a value among the following is - (a) HCOOH - (b) CH₃COOH - (c) CICH2COOH - (d) FCH2COOH - **23.** pK_a values of two acids A and B are 4 and 5. The strengths of these two acids are related as - (a) Acid A is 10 times stronger than acids B - (b) Strength of acid A: strength of acid B = 4:5 - (c) The strengths of the two acids can not be compared - (d) Acid B is 10 times stronger than acid A - 24. The relative basic character of the following is - (a) $CIO^- < CIO_2^- < CIO_3^- < CIO_4^-$ - (b) $CIO_4^- < CIO_3^- < CIO_2^- < CIO^-$ - (c) $CIO_3^- < CIO_4^- < CIO_2^- < CIO^-$ - (d) $CIO_2^- < CIO^- < CIO_3^- < CIO_4^-$ - **25.** Arrange NH_4^+, H_2O, H_3O^+, HF and OH^- in increasing order of acidic nature - (a) $H_3O^+ < NH_4^+ < HF < OH^- < H_2O$ - (b) $NH_4^+ < HF < H_3O^+ < H_2O < OH^-$ - (c) $OH^- < H_2O < NH_4^+ < HF < H_3O^+$ - (d) $H_3O^+ > HF > H_2O > NH_4^+ > OH^-$ - 26. According to Bronsted-Lowry concept, the correct order of relative strength of bases follows the order - (a) CH3COO- > CI- > OH- - (b) $CH_3COO^- > OH^- > CI^-$ - (c) $OH^- > CH_3COO^- > CI^-$ - (d) $OH^- > CI^- > CH_3COO^-$ - 27. The correct order of acidity for the following is - (a) HCN > CICH₂COOH > HCOOH > CH₃COOH - (b) HCN > HCOOH > CICH₂COOH > CH₃COOH - (c) CICH₂COOH > HCOOH > CH₃COOH > HCN - (d) CICH2COOH > HCN > HCOOH > CH3COOH - 28. The strongest acid is - (a) H_3 As O_4 - (b) H_3 AsO₃ - (c) H_3PO_3 - (d) H₃PO₄ - 29. Which of the following is the strongest base - (a) $C_2H_5^-$ - (b) $C_2H_5COO^-$ - (c) $C_2H_5O^-$ - (d) OH- - **30.** The ionisation constant of phenol is higher than that of ethanol because - (a) Phenoxide ion is bulkier than ethoxide - (b) Phenoxide ion is stronger base than ethoxide - (c) Phenoxide ion is stabilised through delocalisation - (d) Phenoxide ion is less stable than ethoxide - **31.** The correct order of increasing $[H_3O^+]$ in the following aqueous solutions is - (a) $0.01 \, M \, H_2 S < 0.01 \, M \, H_2 S O_4 < 0.01 \, M \, NaCl$ < 0.01 M NaNO₂ (b) $0.01 \text{ M NaCl} < 0.01 \text{ M NaNO}_2 < 0.01 \text{ M H}_2\text{S}$ $< 0.01 M H_2 SO_4$ (c) $0.01 \text{ M NaNO}_2 < 0.01 \text{ M NaCl} < 0.01 \text{ M H}_2\text{S}$ $< 0.01 \, M \, H_2 SO_4$ (d) $0.01 \text{ M H}_2\text{S} < 0.01 \text{ M NaNO}_2 < 0.01 \text{ M NaCl}$ $< 0.01 \, M \, H_2 SO_4$ - **32.** The correct order of decreasing acidic nature of $H_2O,ROH,CH \equiv CH$ and NH_3 is - (a) $CH = CH > H_2O > ROH > NH_3$ - (b) $H_2O > ROH > CH \equiv CH > NH_3$ - (c) $ROH > NH_3 > CH \equiv CH > H_2O$ - (d) $H_2O > ROH > NH_3 > CH \equiv CH$ - 33. Order of the base strength of the compounds (i) O (iii) NH_2^- - (iv) - (a) iv > iii > i > ii - (b) iii > ii > iv > i - (c) ii > iii > iv > i - (d) ii > iii > i > iv | 34. | Which of the following dissolution | solves in water to give a neutral | 3. | The concentration of KI and KCI in certain solution containing both is $0.001M$ each. If 20 mL of this solution is added to 20 | |-------------|------------------------------------|---------------------------------------|----
--| | | (a) $(NH_4)_2SO_4$ | (b) Ba(NO ₃) ₂ | | mL of a saturated solution of Agl in water? What will happen | | | (c) CrCl ₃ | (d) CuSO ₄ | | (a) AgCl will be precipitated | | 35 . | Which oxychloride has max | imum <i>pH</i> | | (b) AgI will be precipitated | | | (a) NaClO | (b) NaClO ₂ | | (c) Both AgCl and AgI will be precipitated | | | (c) NaClO ₃ | (d) NaClO ₄ | | (d) There will be no precipitated | | | A colution of . 1: | 4 | 4. | In a solution of acetic acid, sodium acetate is added, then its | - **36.** A solution of sodium borate has a pH of approximately (a) < 7 - (c) = 7 - (b) > 7 - (d) Between 4 to 5 - 37. Which one is not an acid salt - (a) NaH₂PO₂ - (b) NaH2PO3 - (c) NaH2POA - (d) None - 38. In which of the following solvents is silver chloride most soluble - (a) 0.1 mol dm⁻³ AgNO₃ solution - (b) 0.1 mol dm⁻³ HCl solution - (c) H₂O - (d) Aqueous ammonia - **39.** NH_4HF_2 ionises in aqueous medium as - (a) $NH_4HF^+F^-$ - (b) $NH_4^+HF_2^-$ - (c) $NH_3HF^-H^+$ - (d) $NH_4F_2^-H^+$ - 40. The most stable Lewis acid-base adduct among the following - (a) $H_2O \rightarrow BCl_3$ - (b) $H_2S \rightarrow BCl_3$ - (c) $H_3N \rightarrow BCl_3$ - (d) $H_3P \rightarrow BCl_3$ ## Common Ion Effect, Isohydric Solutions. Solubility Product, Ionic Product of Water and Salt Hydrolysis - 1. The addition of HCI will not suppress the ionization of - (a) Acetic acid - (b) Benzoic acid - (c) H₂S - (d) Sulphuric acid - 2. Why pure NaCl is precipitated when HCl gas is passed in a saturated solution of NaCl - (a) Impurities dissolve in HCI - (b) The value of $[Na^+]$ and $[CI^-]$ becomes smaller than K_{sp} of NaCl - (c) The value of $[Na^+]$ and $[Cl^-]$ becomes greater than K_{sp} of NaCl - (d) HCI dissolves in the water - pH value - (a) Decreases - (b) Increases - (c) Remains unchanged - (d) (a) and (b) both are correct - **5.** Blood pH is controlled by concentration of H_2CO_3 and HCO3 . In presence of NaHCO3, pH of blood is - (a) Increased - (b) Decreased - (c) No change - (d) Statement is wrong - 6. Which pair will show common ion effect - (a) $BaCl_2 + Ba(NO_3)_2$ - (b) NaCl + HCl - (c) $NH_4OH + NH_4CI$ - (d) AgCN + KCN - 7. Solubility of BaF_2 in a solution $Ba(NO_3)_2$ will be represents by the concentration term - (a) $[Ba^{++}]$ - (b) $[F^{-}]$ - (c) $\frac{1}{2}[F^-]$ - (d) $2[NO_3^-]$ - **8.** If the solubility of $PbBr_2$ is Sg-mole per litre, its solubility product, considering it to be 80% ionized, is - (a) $2.048S^2$ - (b) $20.48S^3$ - (c) $2.048S^3$ - (d) $2.048S^4$ - **9.** The solubility product of $Mg(OH)_2$ is 1.2×10^{-11} . The solubility of this compound in gram per $100\,cm^3$ of solution is - (a) 1.4×10^{-4} - (b) 8.16×10^{-4} - (c) 0.816 - (d) 1.4 - 10. The solubility of silver chromate in 0.01 M K_2CrO_4 is $2\!\times\!10^{-8}\,\text{mol}\,\text{dm}^{-3}$. The solubility product of silver chromate will be - (a) 8×10^{-24} - (b) 16×10^{-24} - (c) 1.6×10^{-18} - (d) 16×10^{-18} - 11. Select incorrect sequence of solubility product values among the following - (a) CoS > CuS - (b) NiS > PbS - (c) $Fe(OH)_3 > Fe(OH)_2$ (d) $Ni(OH)_2 > Cr(OH)_3$ - 12. On the addition of a solution containing CrO_4^{2-} ions to the solution of Ba^{2+} , Sr^{2+} and Ca^{2+} ions, the precipitate obtained first will be of - (a) CaCrO₄ - (b) SrCrO₄ - (c) BaCrO₄ - (d) Mixture of (a), (b), (c) - 13. In the reaction: $H_2S \rightleftharpoons 2H^+ + S^{--}$, when NH_4OH is added, then - (a) S⁻⁻ is precipitate - (b) No action takes places - (c) Concentration of S- decreases - (d) Concentration of S- increases - **14.** One dm^3 solution containing 10^{-5} moles each of Cl^- ions and CrO_4^{-2} ions is treated with 10^{-4} moles of silver nitrate. Which one of the following observations is made $$[K_{sp}Ag_2CrO_4 = 4 \times 10^{-12}] [K_{sp}AgCl = 1 \times 10^{-10}]$$ - (a) Precipitation does not occur - (b) Silver chromate gets precipitated first - (c) Silver chloride gets precipitated first - (d) Both silver chromate and silver chloride start precipitation simultaneously - 15. Upto what pH must a solution containing a precipitate of Cr(OH)3 be adjusted so that all of precipitate dissolves (When $$Cr^{3+} = 0.1 mol/I, K_{sp} = 6 \times 10^{-31}$$) - (a) Upto 4.4 - (b) Upto 4.1 - (c) Upto 4.2 - (d) Upto 4.0 - **16.** $Fe(OH)_3$ can be separated from $AI(OH)_3$ by the addition of - (a) NaCl solution - (b) Dil. HCl solution - (c) NaOH solution (d) NH₄Cl and NH₄OH - 17. At 25°C, the solubility product of Hg2Cl2 in water is 3.2×10^{-17} mol³ dm⁻⁹. What is the solubility of Hg_2Cl_2 in water at 25°C - (a) $1.2 \times 10^{-12} M$ - (b) $3.0 \times 10^{-6} M$ - (c) $2 \times 10^{-6} M$ - (d) $1.2 \times 10^{-16} M$ - (e) $5.2 \times 10^{-6} M$ - 18. Which of the following represents hydrolysis - (a) $HCO_3^- + H_2O \implies CO_3^{2-} + H_3O^+$ - (b) $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$ - (c) $H_3BO_3 + H_2O \implies H_2BO_3^- + H_3O^+$ - (d) $H_2PO_4^- + H_2O \implies HPO_4^{2-} + H_3O^+$ - **19.** The values of Ksp of $CaCO_3$ and CaC_2O_4 are 4.7×10^{-9} and 1.3×10^{-9} respectively at $25^{\circ}C$. If the mixture of these two is washed with water, what is the concentration of Ca^{2+} ions in water - (a) $5.831 \times 10^{-5} M$ - (b) $6.856 \times 10^{-5} M$ - (c) $3.606 \times 10^{-5} M$ (d) $7.746 \times 10^{-5} M$ - 20. Aqueous solution of $CuSO_4.5H_2O$ changes blue litmus paper to red due to - (a) Presence of Cu++ ions - (b) Presence of SO_4^{-} ions - (c) Hydrolysis taking place - (d) Reduction taking place - 21. The different colours of litmus in acidic, neutral and basic solutions are, respectively - (a) Red, orange and blue - (b) Blue, violet and red - (c) Red, colourless and blue (d) Red, violet and blue - 22. The aqueous solution of which one of the following is basic - (a) HOCI - (b) NaHSO - (c) NH₄NO₃ - (d) NaOCI - 23. The degree of hydrolysis in hydrolytic equilibrium $A^- + H_2O \rightleftharpoons HA + OH^-$ at salt concentration of 0.001M is $(K_a = 1 \times 10^{-5})$ - (a) 1×10^{-3} - (b) 1×10^{-4} - (c) 5×10^{-4} - (d) 1×10^{-6} - **24.** If the K_b value in the hydrolysis reaction $B^+ + H_2 O \rightleftharpoons$ $BOH + H^+$ is 1.0×10^{-6} , then the hydrolysis constant of the salt would be - (a) 1.0×10^{-6} - (b) 1.0×10^{-7} - (c) 1.0×10^{-8} - (d) 1.0×10^{-9} - **25.** The pH at the equivalence point of a titration may differ from 7.0 because of - (a) The self ionisation of water - (b) Hydrolysis of the salt formed - (c) The indicator used - (d) The concentration of the standard solution - **26.** The degree of hydrolysis of a salt of weak acid and weak base in its 0.1 *M* solution is found to be 50%. If the molarity of the solution is 0.2 *M*, the percentage hydrolysis of the salt should be - (a) 50% - (b) 35% - (c) 75% - (d) 100% - **27.** In the equilibrium $A^- + H_2O \implies HA + OH^ (K_a = 1.0 \times 10^5)$. The degree of hydrolysis of 0.001 M solution of the salt is - (a) 10^{-3} - (b) 10^{-4} - (c) 10^{-5} - (d) 10^{-6} - **28.** When 1.88g of AgBr(s) is added to a $10^{-3}M$ aqueous solution of KBr, the concentration of Ag is $5\times 10^{-10}M$. If the same amount of AgBr(s) is added to a $10^{-2}M$ aqueous solution of $AgNO_3$, the concentration of Br^- is - (a) $9.4 \times 10^{-9} M$ - (b) $5 \times 10^{-10} M$ - (c) $1 \times 10^{-11} M$ - (d) $5 \times 10^{-11} M$ - **29.** $Mg(OH)_2$ is precipitated when NaOH is added to a solution of Mg^{2+} . If the final concentration of Mg^{2+} is $10^{-10}M$, the concentration of $OH^-(M)$ in the solution is [Solubility product for $Mg(OH)_2 = 5.6 \times 10^{-12}$] - (a) 0.056 - (b) 0.12 - (c) 0.24 - (d) 0.025 # 4. Hydrogen Ion Concentration- pH Scale and Buffer Solution - 100 mL of HCl + 35mL of NaOH, colour of methyl orange in the solution will be - (a) Red - (b) Yellow - (c) Can't be predicted - (d) Methyl orange is not a suitable indicator - 2. For a weak acid, the incorrect statement is - (a) Its dissociation constant is low - (b) Its pK_a is very low - (c) It is partially dissociated - (d) Solution of its sodium salt is alkaline in water - 3. Which of the following will decrease the pH of a 50 mL solution of 0.01 M HCI - (a) Addition of 5 mL of 1 M HCl - (b) Addition of 50 mL of 0.01 M HCI - (c) Addition of 50 mL of 0.002 M HCl - (d) Addition of Mg - **4.** A solution of $MgCl_2$ in water has pH - (a) < 7 - (b) > 7 (c) 7 - (d) 14.2 - **5.** The pH of 0.05 M solution of dibasic acid is - (a) +1 (b) -1 (c) +2 - (d) -2 - **6.** Which of the following does not make any change in *pH* when added to 10 *mL* dilute *HCl* - (a) 5 mL pure water - (b) 20 mL pure water - (c) 10 mL HCl - (d) Same 20 mL dilute HCl - **7.** The concentration of hydronium (H_3O^+) ion in water is - (a) Zero - (b) 1×10^7 g ion/litre - (c) 1×10^{-14} g ion/litre - (d) 1×10^{-7} g ion/litre - **8.** When a strong acid is titrated using a weak base, the *pH* at the equivalence point is - (a) 7 - (b) > 7 - (c) < 7 - (d) ≈ 7 - **9.** 10^{-6} *M NaOH* is diluted 100 times. The *pH* of the diluted base is - (a) Between 5 and 6 - (b) Between 6 and 7 - (c) Between 10 and 11 - (d) Between 7 and 8 - 10. The pH of the solution containing 10 mL of 0.1 N NaOH and 10 mL of 0.05 N H₂SO₄ would be - (a) 0 - (b) 1 - (c) > 7 - (d)7 - **11.** If pK_a of acetic acid and pK_b of ammonium hydroxide are 4.76 each. The pH of ammonium acetate is - (a) 7 - (b) Less than 7 - (c) More than 7 - (d) Zero | (a | a) 13.4 | (b) 12.4 | (c) 7.0 | (d) Between 6 and 7 | |---------------|--
--|---|---| | (0 | c) 7.6 | (d) 1.6 | | ip between dissociation constant of | | 13 . p | oK_a of acetic acid is | 4.74. The concentration of | water (K) and ionic prod | duct of water (K_w) is | | C | CH ₃ COONa is 0.01 M. Th | e pH of CH ₃ COONa is | (a) $K_{\omega} = K$ | (b) $K_w = 55.6 \times K$ | | (8 | a) 8.37 | (b) 4.37 | (c) $K_w = 18 \times K$ | (d) $K_w = 14 \times K$ | | (0 | c) 4.74 | (d) 0.474 | | on of ammonium acetate is diluted by | | 14 . p | H of a solution produced v | when an aqueous solution of pH | adding 100 mL of water | er. The pH of the resulting solution will | | | is mixed with an equal v v v v is about | olume of an aqueous solution of | | is nearly equal to pK_a of NH_4OH) | | (a | a) 3.3 | (b) 4.3 | (a) 4.9 | (b) 5.0 | | (0 | c) 4.0 | (d) 4.5 | (c) 7.0 | (d) 10.0 | | 15 . T | | neutral solution at 50°C is | 22. What is the pH for temperature of the hur | a neutral solutions at the normal
man body | | | $pR_w = 15.20 = 15.20 \text{ dr}$ | | (a) 7.2 | (b) 14.0 | | (; | a) 7.0 | (b) 7.13 | (c) 6.8 | (d) 6.0 | | (| c) 6.0 | (d) 6.63 | 23. pH of HCI(10 ⁻¹² M) | is | | | | 25°C is 7.0. As the temperature | (a) 12 | (b) -12 | | | | water increases, however, the and OH^- ions are equal. What will | (c) ≈ 7 | (d) 14 | | | to the pH of pure water a | | 24. Which one of the fo | ollowing electrolytes would dissolve in | | | a) Equal to 7.0 | (b) Greater than 7.0 | water to give a $0.1M$ | solution with pH about 9 | | | | (d) Equal to zero | (a) CH ₃ COOH | (b) CH ₃ COONa | | | c) Less than 7.0 | | (c) NH ₄ Cl | (d) KOH | | 17. 7 | The ionisation constant of | of an acid, K_a is the measure of the K_a values of acetic acid, | (e) NaCl | | | | | formic acid are 1.74×10^{-5} , | 25. The K_{sp} of $Mg(C)$ | $(OH)_2$ is $1 \times 10^{-12}, 0.01 M Mg (OH)_2$ will | | 1 | 3.0×10^{-8} and 1.8×10^{-8} | ⁻⁴ respectively. Which of the | precipitate at the lim | niting pH | | f | following orders of pH o | of 0.1mol dm^{-3} solutions of these | (a) 3 | (b) 9 | | | acids is correct | and the second | (c) 5 | (d) 8 | | (| (a) Acetic acid > hypochlo | orous acid > formic acid | 26. 0.1 M HCl and 0. | 1 M H ₂ SO ₄ , each of volume 2 mL are | | | (b) Hypochlorous acid > a | | | time is made up to 6 mL by adding 2 mL solution. The pH of the resulting mixture is | | | c) Formic acid > hypoch | | (a) 1.17 | (b) 1.0 | | | d) Formic acid > acetic a | | (c) 0.3 | (d) $\log 2 - \log 3$ | | | What will be the value CH_3COOH ($K_a = 1.74 \times 1.00$ | we of pH of $0.01 mol dm^{-3}$ 10^{-5}) | 27. On adding which of <i>HCI</i> will not alter | of the following the pH of $20mL$ of $0.1N$ | | | | | · · · · will flot aller | | (a) 1mL of 1 N HCl (c) 1mL of 0.1 N NaOH 12. The pH of a solution obtained by mixing equal volumes of (b) 12.4 (b) 3.6 (d) 3.0 (a) 3.4 (c) 3.9 $\frac{N}{10}$ NaOH and $\frac{N}{20}$ HCI 19. K_a for CH_3COOH is 1.8×10^{-5} and K_b for NH_4OH is (b) 4.75 1.8×10^{-5} . The pH of ammonium acetate will be (a) 7.005 (b) 20 mL of distilled water (d) $500 \, mL$ of HCl of pH = 1 | 28 | 3. pH of water is 7.0 a | It $25^{\circ}C$. If water is heated to $80^{\circ}C$ | 37. The most important bu | offer in the blood | |-------------|---|--|---|--| | | (a) pH will increase | | (a) HCl and Cl [⊕] | | | | (b) pH will decrease | | | (b) H_2CO_3 and HCO_3^{Θ} | | | (c) pH remains 7.0 | | (c) H_2CO_3 and CI^{Θ} | (d) $HC1$ and HCO_3^{Θ} | | | | | 38. Henderson's equation | is $pH = pK_a + \log \frac{[\text{salt}]}{[\text{acid}]}$. If the acid | | 29 | . At $100^{\circ}C$ the K_w | of water is 55 times its value at $25^{\circ}C$. | gets half neutralized the | e value of pH will be : $[pK_a = 4.30]$ | | | What will be the pH | of neutral solution (log $55 = 1.74$) | (a) 4.3 | (b) 2.15 | | | (a) 7.00 | (b) 7.87 | (c) 8.60 | (d) 7 | | | (c) 5.13 | (d) 6.13 | 39. The pH of a but | ffer solution containing 25 mL of | | 30. | 200 mL of a strong as
mL of another acid so
solution is | cid solution of pH 2.0 is mixed with 800 lution of pH 3.0. The pH of the resultant | $1MCH_3COONa$ and appreciably affected by | 25 mL of 1 M CH3COOH will be | | | (a) 2.55 | (b) 2.97 | (a) 1 M CH ₃ COOH | (b) 5 M CH ₃ COOH | | | (c) 2.40 | (d) 2.10 | (c) 5 M HCI | (d) 1 M NH ₄ OH | | 31. | K_a of H_2O_2 is of the | order of | 40. A weak acid of dissociation | tion constant 10^{-5} is being titrated | | | (a) 10^{-12} | (b) 10 ⁻¹⁴ | | | | | (c) 10 ⁻¹⁶ | (d) 10 ⁻¹⁰ | third neutralization of the | plution. The pH at the point of one- | | 32 . | The pH of the solution | n produced by mixing equal volume of | | | | | 2.0×10 ⁻³ M HClO ₄ | and $1.0 \times 10^{-2} M$ KClO ₄ is | (a) $5 + \log 2 - \log 3$ | (b) $5 - \log 2$ | | | (a) 2.7 | (b) 2.3 | (c) $5 - \log 3$ | (d) 5-log6 | | | (c) 3.0 | (d) 1.0 | Which of the following v
mixed in equal volumes | vill produce a buffer solution when | | 33. | For preparing a buffe | er solution of pH 6 by mixing sodium | | PH and 0.1 mol dm ⁻³ HCl | | | and acid should be (V | d, the ratio of the concentration of salt | | | | | and acid should be (K | | (b) 0.05 mol dm ⁻³ NH_4 | OH and 0.1 mol dm ⁻³ HCl | | | (a) 1:10 | (b) 10:1 | (c) $0.1 \text{ mol dm}^{-3} \text{ NH}_4\text{O}$ | H and $0.05 mol dm^{-3} HCl$ | | | (c) 100 : 1 | (d) 1:100 | | OONa and 0.1 mol dm ⁻³ NaOH | | 34. | Which is incorrect for b | | 42. Which one is buffer solution | | | | | and its conjugate base | | on | | | | ase and its conjugate acid | (a) $[PO_4^{}][[HPO_4^{}]]$ | (b) $[PO_3^{3-}][[H_2PO_4^{}]]$ | | | less amount of acid | y less change is <i>pH</i> value when very
I and base is mixed | (c) $[HPO_4^{}][[H_2PO_4^{}]]$ | (d) All of these | | | (d) None of the above | | 43. Which buffer solution out | of the following will have $pH > 7$ | | | | pared by mixing equal concentration of ont K_a) and a salt. The pH of buffer is | (a) CH ₃ COOH + CH ₃ CO | | | | | | (b) HCOOH + HCOOK | State of the | | | (a) $pK_a + 7$ | (b) $14 - pK_a$ | (c) CH ₃ COONH ₄ | | | | (c) pK _a | (d) $pK_a + 1$ | (d) $NH_4OH + NH_4CI$ | | | 36. | | solutions of equal concentrations | | | | | $A = NH_4CI$ | $B = CH_3COONa$ | neutralized with N-OLI | a weak acid (HA) is 4.50. It is | | | $C = NH_4OH$ | $D = CH_3COOH$ | to half nH of the results | olution to decrease the acid content | | | | obtained by mixing equal volumes of | to half. pH of the resulting | solution | | | (a) C and D | (b) <i>A</i> and <i>B</i> | (a) 4.50 | (b) 8.00 | | | (c) A and C | (d) A and D | (c) 7.00 | (4) 10 00 | (c) 7.00 (d) A and D (d) 10.00 - **45.** Why are strong acids generally used as standard solutions in acid-base titrations - (a) The pH at the equivalence point will always be 7 - (b) They can be used to titrate both strong and weak bases - (c) Strong acids form more stable solutions than weak acids - (d) The salts of strong acids do not hydrolysed - 46. The suitable indicator for strong acid and weak base is - (a) Methyl orange - (b) Methyl red - (c) Phenol red - (d) Phenolphthalein - **47.** The indicator used in the titration of iodine against sodium thiosulphate is - (a) Starch - (b) $K_3Fe(CN)_6$ - (c) K2CrO4 - (d) Potassium - **48.** Phenolphthalein does not act as an indicator for the titration between - (a) NaOH and
CH3COOH - (b) $H_2C_2O_4$ and $KMnO_4$ - (c) Ba(OH)2 and HCI - (d) KOH and H2SO4 - **49.** The indicator used in the titration of sodium carbonate with sulphuric acid is - (a) Phenolphthalein - (b) Methyl orange - (c) Potassium ferrocynide - (d) Potassium ferricynide - 50. An aqueous solution of HCl has a pH of 2.0. When water is added to increase the pH to 5.0 the hydrogen ion concentration - (a) Remains the same - (b) Decreases three-fold - (c) Increases three-fold - (d) Decreases thousand-fold - **51.** The pK_a of a weak acid 5.85. The concentrations of the acid and its conjugate base are equal at a pH of - (a) 6.85 - (b) 5.85 - (c) 4.85 - (d) 7.85 - 52. The pH of 0.1M aqueous solution of NaCl, CH₃COONa and NH₄Cl will follow the order - (a) NaCl < CH3COONa < NH4Cl - (b) NH₄Cl < NaCl < CH₃COONa - (c) NH₄CI < CH₃COONa < NaCI - (d) NaCl < NH₄Cl < CH₃COONa - **53.** The pH of 1N aqueous solutions of HCI, CH_3COOH and HCOOH follows the order - (a) HCl > HCOOH > CH3COOH - (b) $HCl = HCOOH > CH_3COOH$ - (c) CH₃COOH > HCOOH > HCI - (d) $CH_3COOH = HCOOH > HCI$ # 5. IIT-JEE/ AIEEE - **1.** The pH of a 0.1 molar solution of the acid HQ is 3. The value of the ionization constant, K_a of the acid is [2012] - (a) 3×10^{-1} - (b) 1×10^{-3} - (c) 1×10^{-5} - (d) 1×10^{-7} - 2. The first and second dissociation constants of an acid H_2A are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be [2007] - (a) 5.0×10^{-5} - (b) 5.0×10^{15} - (c) 5.0×10^{-15} - (d) 0.0×10^5 - **3.** The dissociation of water at $25^{\circ}C$ is $1.9 \times 10^{-7}\%$ and the density of water is $1.0 \, g/cm^3$. The ionisation constant of water is [1995] - (a) 3.42×10^{-6} - (b) 3.42×10^{-8} - (c) 1.00×10^{-14} - (d) 2.00×10^{-16} - **4.** A 0.004 M solution of Na_2SO_4 is isotonic with a 0.010 M solution of glucose at same temperature. The apparent degree of dissociation of Na_2SO_4 is [2004] - (a) 25% - (b) 50% - (c) 75% - (d) 85% - 5. In aqueous solution the ionization constants for carbonic acid are $$K_1 = 4.2 \times 10^{-7}$$ and $K_2 = 4.8 \times 10^{-11}$ Select the correct statement for a saturated 0.034 M solution of the carbonic acid [2010] - (a) The concentration of H^+ is double that of CO_3^{2-} - (b) The concentration of CO_3^{2-} is 0.034 M - (c) The concentration of ${\rm CO_3^{2-}}$ is greater than that of ${\rm HCO_3^-}$ - (d) The concentration of H^+ and HCO_3^- are approximately equal - 6. The compound that is not a Lewis acid is - [1985; 2002] [1989] - (a) BF_3 - (b) AICI₃ - (c) BeCl₂ - (d) NH₃ - 7. Which is strongest Lewis base - (a) SbH₃ - (b) AsH₃ - (c) PH₃ - (d) NH₃ | | (a) Monobasic and wea | ak Bronsted acid | [2003] | (a) Ammon | und whose 0.1
nium acetate
nium sulphate | M solution is basic is (b) Calcium carbonate | [1986] | |-----|---|--------------------------------------|-------------------------------|--------------------------------------|--|---|-------------------------------| | | (c) Monobasic and stro | ng Lewis acid | | | | (d) Sodium acetate | 241 | | 9. | (d) Tribasic and weak E | Bronsted acid | | water are | s present in so | lution when ${\it CO}_2$ is dis | | | 7. | and a base is | e following, which can act | | (a) CO ₂ , H | ₂ CO ₃ ,HCO ₃ -,0 | CO_{o}^{2-} | [2006] | | | (a) HSO_4^- | (b) SO ₄ ²⁻ | [2002] | (b) H_2CO_3 | | 3 | | | | (c) H ₃ O ⁺ | (d) <i>CI</i> - | | (c) CO_3^2, H_0 | | | | | 10. | . Three reactions involvin | ng $H_2PO_4^-$ are given below | | (d) CO ₂ ,H ₂ | J | | | | | (i) $H_3PO_4 + H_2O \rightarrow H_3$ | $H_3O^+ + H_0PO^-$ | | 18. A precipitate | e of calcium ox | alate will not dissolve in | [1986] | | | (ii) $H_2PO_4^- + H_2O \to F$ | 1300 | | (a) HCI | | (b) <i>HNO</i> ₃ | | | | (iii) $H_2PO_4^- + OH^- \rightarrow H_1$ | 1.5 | | (c) Aquareg | | (d) CH ₃ COOH | | | | | | | 19. The <i>pH</i> of 0, order | .1 <i>M</i> solution of | f the following salts increa | ses in the
[1999] | | | (a) (i) only | oes $H_2PO_4^-$ act as an acid | [2010] | (a) NaCl < | NH ₄ Cl < NaCl | N < HCI | [1999] | | | (c) (i) and (ii) | (b) (ii) only
(d) (iii) only | | (b) <i>HCl</i> < <i>N</i> | NH ₄ Cl < NaCl - | < NaCN | | | 11. | The conjugate base of I | | [9004] | (c) NaCN < | NH ₄ Cl < NaC | Cl < HCl | | | | (a) H ₃ PO ₄ | (b) P ₂ O ₅ | [2004] | (d) HCl < N | laCl < NaCN < | NH ₄ Cl | | | | (c) PO ₄ ³⁻ | (d) HPO ₄ ²⁻ | | 20 . Which one o | of the following | salt is most acidic in wat | er | | 12. | • | | | (a) NiCl ₂ | | (1.) 5. 6. | [1995] | | | affinity | ing substance has the high | est proton
[2003] | (c) FeCl ₃ | | (b) BeCl ₂ | | | | (a) H ₂ O | (b) H ₂ S | [2000] | | acotulos lieulis | (d) AICI ₃ | | | | (c) NH ₃ | (d) <i>PH</i> ₃ | | gastric juice | in human stom | acid (aspirin) is 3.5. The nach is about 2-3 and the | e pH of | | 13. | What is the conjugate ba | ase of OH- | [2005] | the small inte | estine is about 8 | 8. Aspirin will be | [1988] | | | (a) O ₂ | (b) H ₂ O | E. S. 30 | (a) Unionize | d in the small i | ntestine and in the stoma | ach | | | (c) O ⁻ | (d) O^{2-} | | (b) Complete
stomach | ely ionized in th | ne small intestine and in | the | | 14. | Four species are listed be | elow | | | n the stomach | and almost unionized in | | | | (i) HCO ₃ | (ii) H_3O^+ | | mestine | | | | | | (iii) <i>HSO</i> ₄ | (iv) HSO ₃ F | | (d) Ionized ir
stomach | n the small inte | estine and almost unioniz | ed in the | | | Which one of the followin
strengt | ng is the correct sequence of | | 22. The solubility | product of a s | salt having general formu | lla MX ₂ , | | | (a) ii < iii < i < iv | (b) i < iii < ii < iv | [2008] | in water is : | $4 imes 10^{-12}$. The | concentration of M^{2+} is | ons in the | | | (c) $iii < i < iv < ii$ | (d) iv $<$ ii $<$ iii $<$ i | | (a) 2.0×10 | ition of the salt | | [2005] | | 15. | The correct order of incre | asing basicity of the given o | | (a) 2.0×10^{-1} | | (b) $1.0 \times 10^{-4} M$
(d) $4.0 \times 10^{-10} M$ | | | | bases $(R = CH_3)$ is | - Video W | [2010] | | | $M_{\rm c}^{(4)} = 4.0 \times 10^{-10} M_{\rm c}^{(4)}$
Heach in Mn^{2+} , Fe^{2+} , Ze^{2+} | 72+ | | | (a) $RCO\overline{O} < HC \equiv \overline{C} < \overline{D}$ | | | Hg^{2+} is tre | eated with 10 | $0^{-16}M$ sulphide ion. If | n and | | | (b) $RCO\overline{O} < HC \equiv \overline{C} < \overline{B}$ | | | | | are $10^{-15}, 10^{-23}, 10^{-20}$ ar | | | 18 | (c) $\overline{R} < HC \equiv \overline{C} < RCO\overline{C}$ | $\overline{O} < \overline{N}H_2$ | | respectively, | which one will | precipitate first | [2003] | | | (d) $RCO\overline{O} < \overline{N}H_2 < HC$ | $\equiv \overline{C} < \overline{R}$ | | (a) FeS
(c) HgS | | (b) <i>MnS</i> (d) <i>ZnS</i> | • | 24. The solubility in water of a sparingly soluble salt AB2 is $1.0 \times 10^{-5} \text{mol } l^{-1}$. Its solubility product number will be [2003] - (a) 4×10^{-15} - (b) 4×10^{-10} - (c) 1×10^{-15} - (d) 1×10^{-10} - **25.** Solid $Ba(NO_3)_2$ is gradually dissolved in a $1.0 \times 10^{-4} M$ Na2CO3 solution. At what concentration of Ba2+ will a precipitate begin to form $(K_{sp} \text{ for } BaCO_3 = 5.1 \times 10^{-9})$ [2009] - (a) $4.1 \times 10^{-5} M$ - (b) $5.1 \times 10^{-5} M$ - (c) $8.1 \times 10^{-8} M$ - (d) $8.1 \times 10^{-7} M$ - **26.** Solubility of a salt M_2X_3 is $y \mod dm^{-3}$. The solubility product of the salt will be [1990, 97] - (a) $6v^4$ - (b) $64v^4$ - (c) $36v^5$ - (d) $108v^5$ - 27. The molar solubility (mol L^{-1}) of a sparingly soluble salt MX_4 is 's'. The corresponding solubility product is K_{sp} . 's' is given in terms of K_{sp} by the relation - (a) $s = (256K_{sp})^{1/5}$ - (b) $s = (128K_{sp})^{1/4}$ - (c) $s = (K_{sp}/128)^{1/4}$ - (d) $s = (K_{sp}/256)^{1/5}$ - 28. Which hydroxide will have lowest value of solubility product [1990] at normal temperature (25°C) - (a) Mg (OH)₂ - (b) Ca(OH)2 - (c) Ba(OH)2 - (d) $Be(OH)_2$ - **29.** Solubility product constant (K_{sp}) of salts of types MX_1 , MX_2 and M_3X at temperature 'T' are 4.0×10^{-8} , 3.2×10^{-14} and 2.7×10^{-15} , respectively. Solubilities (moldm⁻³) of the salts at temperature T are in the order - (a) $MX_1 > MX_2 > M_3X$ (b) $M_3X > MX_2 > MX_1$ - (c) $MX_2 > M_3X > MX_1$ (d) $MX_1 > M_3X > MX_2$ - 30. In a saturated solution of the sparingly soluble strong electrolyte AgIO₃ (Molecular mass = 283) the equilibrium which sets in is $$AgIO_{3(s)} \rightleftharpoons Ag^{+}_{(aq)} + IO^{-}_{3(aq)}$$ If the solubility product constant K_{sp} of $AgIO_3$ at a given temperature is 1.0×10^{-8} , what is the mass of AgIO₂ contained in 100 mL of its saturated solution [2007] - (a) $28.3 \times 10^{-2} \ \sigma$ - (b) 2.83×10^{-3} g - (c) $1.0 \times 10^{-7} g$ - (d) 1.0×10^{-4} g - **31.** The precipitate of CaF_2 $(K_{sp} = 1.7 \times 10^{-10})$ is obtained when equal volumes of the following are mixed [1982, 92] - (a) $10^{-4} M C a^{2+} + 10^{-4} M F^{-}$ - (b) $10^{-2}MCa^{2+} + 10^{-3}MF^{-}$ - (c) Both - (d) None of these - 32. The compound insoluble in acetic acid is - (a) Calcium oxide - (b) Calcium carbonate [1986] - (c) Calcium oxalate - (d) Calcium hydroxide - **33.** Solubility product of silver bromide is 5.0×10^{-13} . The quantity of potassium bromide (molar mass taken as 120 g mol^{-1}) to be added to 1 litre of 0.05 M solution of silver nitrate to start the precipitation of AgBr is [2010] - (a) 5.0×10^{-8} g - (b) 1.2×10^{-10} g - (c) $1.2 \times 10^{-9} g$ - (d) $6.2
\times 10^{-5} g$ - **34.** At 25°C, the solubility product of $Mg(OH)_2$ is 1.0×10^{-11} . At which pH, will Mg2+ ions start precipitating in the form of $Mg(OH)_2$ from a solution of 0.001M Mg^{2+} ions - (a) 8 - (c) 10 - (d) 11 - **35.** For a sparingly soluble salt A_pB_q , the relationship of its solubility product (L_S) with its solubility (S) is [2001] - (a) $L_s = S^{p+q} . p^p . q^q$ - (b) $L_s = S^{p+q}.p^q.a^p$ - (c) $L_s = S^{pq}.p^p.q^q$ (d) $L_s = S^{pq}.(p.q)^{p+q}$ - **36.** Passing H_2S gas into a mixture of Mn^{2+} , Ni^{2+} , Cu^{2+} and Hg²⁺ ions in an acidified aqueous solution precipitates [2011] - (a) CuS and HqS - (b) MnS and CuS - (c) MnS and NiS - (d) NiS and HgS - **37.** A weak acid HX has the dissociation constant $1 \times 10^{-5} M$. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is [2004] - (a) 0.0001% - (b) 0.01% - (c) 0.1% - (d) 0.15% - **38.** 2.5mL of $\frac{2}{5}M$ weak monoacidic base $(K_b = 1 \times 10^{-12})$ at 25°C) is titrated with $\frac{2}{15}MHCl$ in water at 25°C. The concentration of H^+ at equivalence point is $(K_w = 1 \times 10^{-14})$ at 25°C) - (a) $3.7 \times 10^{-13} M$ - (b) $3.2 \times 10^{-7} M$ - (c) $3.2 \times 10^{-2} M$ - (d) $2.7 \times 10^{-2} M$ - 39. pK_a of a weak acid (HA) and pK_b of a weak base (BOH) are 3.2 and 3.4, respectively. The pH of their salt (AB) solution is [2017] (a) 6.9 (b) 7.0 (c) 1.0 (d) 7.2 40. Which of the following salts is the most basic in aqueous solution [2018] (a) $FeCl_3$ (b) $Pb(CH_3COO)_2$ (c) $Al(CN)_3$ (d) CH_3COOK - **41.** An aqueous solution contains an unknown concentration of Ba^{2+} . When $50\,m$ of a 1M solution of Na_2SO_4 is added, $BaSO_4$ just begins to precipitate. The final volume is $500\,m$. The solubility product of $BaSO_4$ is 1×10^{-10} . What is the original concentration of Ba^{2+} [2018] - (a) $1.1 \times 10^{-9} M$ - (b) $1.0 \times 10^{-10} M$ - (c) $5 \times 10^{-9} M$ - (d) $2 \times 10^{-9} M$ - **42.** An aqueous solution contains $0.10M\ H_2S$ and $0.20M\ HCl$. If the equilibrium constant for the formation of HS^- from H_2S is 1.0×10^{-7} and that of S^{2-} from HS^- ions is 1.2×10^{-13} then the concentration of S^{2-} ions in aqueous solution is [2018] - (a) 6×10^{-21} - (b) 5×10^{-19} - (c) 5×10^{-8} - (d) 3×10^{-20} - **43.** 1 *M NaCl* and 1 *M HCl* are present in an aqueous solution. The solution is [2002] - (a) Not a buffer solution with pH < 7 - (b) Not a buffer solution with pH > 7 - (c) A buffer solution with pH < 7 - (d) A buffer solution with pH > 7 - **44.** The pH of 10^{-8} molar aqueous solution of HCl is [1981] - (a) 8 - (b) 8 - (c) 6 > 7 (Between 6 and 7) - (d) 7 > 8 (Between 7 and 8) - **45.** If pK_b for fluoride ion at $25^{\circ}C$ is 10.83, the ionisation constant of hydrofluoric acid in water at this temperature is [1997] - (a) 1.74×10^{-3} - (b) 3.52×10^{-3} - (c) 6.75×10^{-4} - (d) 5.38×10^{-2} - **46.** The pK_a of a weak acid, HA is 4.8. The pK_b of a weak base, BOH, is 4.78. The pH of an aqueous solution of the corresponding salt, BA, will be [2008] - (a) 4.79 - (b) 7.01 - (c) 9.22 - (d) 9.58 - **47.** Which one of the following statements is not true [2003] - (a) The conjugate base of $H_2PO_4^-$ is HPO_4^2 - (b) pH + pOH = 14 for all aqueous solutions - (c) The pH of $1 \times 10^{-8} MHCl$ is 8 - (d) 96,500 coulombs of electricity when passed through a $CuSO_4$ solution deposits 1 gram equivalent of copper at the cathode - **48.** How many litres of water must be added to 1L of aqueous solution of HCI with a pH of 1 to create an aqueous solution with pH of 2 [2013] - (a) 0.1 L - (b) 0.9 L - (c) 2.0 L - (d) 9.0 L - **49.** When rain is accompanied by a thunderstorm, the collected rain water will have a pH value [2003] - (a) Slightly lower than that of rain water without thunderstorm - (b) Slightly higher than that when the thunderstorm is not there - (c) Uninfluenced by occurrence of thunderstorm - (d) Which depends on the amount of dust in air - **50.** 0.1 mole of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is mixed with 0.08 mole of HCl and diluted to one litre. What will be the H^+ concentration in the solution [2005] - (a) $8 \times 10^{-2} M$ - (b) $8 \times 10^{-11} M$ - (c) $1.6 \times 10^{-11} M$ - (d) $8 \times 10^{-5} M$ - **51.** The pK_a of a weak acid (HA) is 4.5. The pOH of an aqueous buffered solution of HA in which 50% of the acid is ionized is [2007] - (a) 4.5 - (b) 2.5 - (c) 9.5 - (d) 7.0 52. An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination | | | | [2018 | |------------|--------|--------|-----------------------| | | Base | Acid | End point | | (a) | Weak | Strong | Yellow to pinkish red | | (b) Strong | | Strong | Pink to colourless | | (c) | Weak | Strong | Colourless to pink | | (d) | Strong | Strong | Pinkish red to yellow | #### 6. NEET/ AIPMT/ CBSE-PMT - 1. The hydrogen ion concentration in weak acid of dissociation constant K_a and concentration c is nearly equal to - (a) $\sqrt{K_a/c}$ - (b) c/K_a - (c) Kac - (d) $\sqrt{K_a c}$ - **2.** A weak acid HA has a K_a of 1.00×10^{-5} . If 0.100 mol of this acid is dissolved in one litre of water the percentage of acid dissociated at equilibrium is close to - (a) 99.0% - (b) 1.00% - (c) 99.9% - (d) 0.100% - 3. The percentage of pyridine (C_5H_5N) that forms pyridinium ion $(C_5H_5N^+H)$ in a 0.10~M aqueous pyridine solution $(K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is [2016] - (a) 1.6 % - (b) 0.0060 % - (c) 0.013 % - (d) 0.77 % - Which of the following is not a Lewis acid - [1996] - (a) BF_3 - (b) FeCl2 - (c) SiF₄ - (d) C_2H_4 - Which of the following is least likely to behave as Lewis base [2011; 2013] - (a) OH- - (b) H₂O - (c) NH₃ - (d) BF2 - Which of the following fluoro-compounds is most likely to behave as a Lewis base [2016] - (a) SiF₄ - (b) BF₃ - (c) PF_3 - (d) CF₄ - 7. Which of the following molecules acts as a Lewis acid [2009] - (a) $(CH_3)_3 B$ - (b) (CH₃)₂O - (c) $(CH_3)_3 P$ - (d) $(CH_3)_3 N$ - Boric acid is an acid because its molecule - (a) Combines with proton from water molecule - (b) Contains replaceable H⁺ ion - (c) Gives up a proton - (d) Accepts OH⁻ from water releasing proton - Which of the following is the strongest conjugate base [1999] [2016] - (a) C1- - (b) CH₃COO - (c) SO₄-- - (d) NO2 - **10.** The conjugate acid of NH_2^- is [1985; 2000] - (a) NH_3 - (b) NH₄+ - (c) NH₂OH - (d) N_2H_4 - 11. Which one of the following compound is not a protonic acid [2003] - (a) $SO_2(OH)_2$ - (b) $B(OH)_3$ - (c) PO(OH)3 - (d) SO(OH)2 - 12. The correct order of acid strength is [2005, 2016] - (a) HCIO < HCIO₂ < HCIO₃ < HCIO₄ - (b) HClO₄ < HClO < HClO₂ < HClO₃ - (c) HClO₂ < HClO₃ < HClO₄ < HClO - (d) $HCIO_4 < HCIO_3 < HCIO_2 < HCIO$ - 13. Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH[2008; 2012] - (a) MgCl₂ - (b) CaCl2 - (c) SrCl2 - (d) BaCl₂ - 14. Which one is the strongest acid - [1989; 2013] - (a) HCIO - (b) HCIO₂ - (c) H_2SO_4 - (d) HCIO₄ - 15. Acidity of diprotic acids in aqueous solutions increases in the [2014] - (a) $H_2Te < H_2S < H_2Se$ (b) $H_2Se < H_2Te < H_2S$ - (c) $H_2S < H_2Se < H_2Te$ (d) $H_2Se < H_2S < H_2Te$ - 16. The aqueous solution of which of the following salt has the lowest pH - (a) NaClO - (b) NaClO₂ - (c) NaClO₃ - (d) NaClO₄ | 17. | Which of the following salts | will give highest pH in | water
[2014] | 25. | In which of th solubility | e following so | vents will <i>AgBr</i> | have the highest [1992] | |-----|---|------------------------------------|-----------------------------------|-----|--------------------------------------|-----------------------------|------------------------------------|------------------------------------| | | (a) Na ₂ CO ₃ | (b) CuSO ₄ | | | (a) $10^{-3} M$ | NaBr | (b) $10^{-3} M$ | NH 4OH | | | (c) KCl | (d) NaCl | | | | | | | | 18. | What is the correct relations | ship between the <i>pHs</i> c | of isomolar | | (c) Pure wa | ater | (d) $10^{-3} M$ | 1 HBr | | | solutions of sodium oxide | (pH_1) , sodium sulphic | de (pH_2) , | 26. | pH of a satur | rated solution | of $Ba(OH)_2$ is | 12. The value of | | | sodium selenide (pH_3) and | l sodium telluride (pH_4 |) | | solubility prod | luct (K_{sp}) of E | $a(OH)_2$ is | [2012] | | | | | [2005] | | (a) 3.3×10^{-7} | | (b) 5.0×10^{-7} | | | | (a) $pH_1 > pH_2 = pH_3 > p$ | H_4 | | | (c) 4.0×10^{-6} | | (d) 5.0×10^{-6} | | | | (b) $pH_1 < pH_2 < pH_3 < pH_3$ | H ₄ | | 97 | | | , AgCl, AgBr | and <i>AgI</i> are | | | (c) $pH_1 < pH_2 < pH_3 = p$ | H_4 | | 21. | | | | $0^{-13}, 8.3 \times 10^{-17}$. | | | (d) $pH_1 > pH_2 > pH_3 > p$ | н. | | | | | | ate last if $AgNO_3$ | | 10 | | • | 1.0 | | | | | g equal moles of | | 19. | On passing a current of Hall NaCl, the solubility of NaCl | | [1989] | | NaCl, NaBr, N | Val and Na ₂ C | CrO ₄ | [2015] | | | (a) Increases | (b) Decreases | | | (a) AgCl | | (b) AgBr | | | | (c) Remains unchanged | (d) NaCl decompose | oc. | | (c) Ag_2CrO_4 | | (d) AgI | | | 20 | Solubility of AgCl will be | - | [1995] | 28. | MY and NY_3 , | two nearly in | soluble salts, ha | ve the same $K_{\rm sp}$ | | 20. | (a) 0.001 M AgNO ₃ | (b) Pure water | [1990] | | values of 6.2 would be true | | | Which statement
[2016] | | | (c) 0.01 M CaCl ₂ | (d) 0.01 M NaCl | | | (a) The molar | solubilities of <i>N</i> | ⁄/Y and NY₃ in w | ater are identical | | 21. | Consider the nitration of be | enzene using mixed cond | c. H _o SO ₄ | | (b) The molar | solubility of M | Y in water is less | than that of NY ₃ | | | and HNO_3 . If a
large ammixture, the rate of nitration | ount of $KHSO_4$ is add | | | (c) The salts M in pure wa | | e more soluble i | n 0.5 M KY than | | | (a) Faster | (b) Slower | | | | | | of MY and NY3 | | | (c) Unchanged | (d) Doubled | | | | o effect on the | | and the same | | • | | | an ala/litua | 29. | The solubility is in 0.1 <i>M</i> Na | | | oduct 1.6×10 ⁻¹⁰ [2016] | | 22. | Solubility of MX_2 type e. The value of $K_{\rm sp}$ of the ele | | [2002] | | | Cr solution we | | | | | 7 | | [2002] | | (a) Zero | | (b) 1.26×10^{-5} | | | | (a) 5×10^{-13} | (b) 25×10^{-10} | | | (c) 1.6×10^{-9} | | (d) 1.6×10^{-11} | | | | (c) 1.25×10^{-13} | (d) 5×10^{12} | | 30. | | 10.5 | 1.00 m | can be separated chloride salts. A | | 23. | The solubility product of | a sparingly soluble s | alt AX_2 is | | | | | concentration of | | | 3.2×10^{-11} . Its solubility (ir | moles $/L$) is | [2004] | | 0.10 M. Aqueo | ous HCI is add | ded to this soluti | on until the Cl- | | | (a) 2×10^{-4} | (b) 4×10^{-4} | | | | | at will the concer | ntrations of Ag+ | | | (c) 5.6×10^{-6} | (d) 3.1×10^{-4} | | | and Pb^{2+} be a | t equilibrium | | [2011] | | 24. | The solubility product of Ag | al at 25°C is 1.0×10^{-1} | 16 mol 2 1 $^{-2}$. | | (K _{sp} for AgCl | $=1.8\times10^{-10}$ | K_{sp} for $PbCl_2 =$ | (1.7×10^{-5}) | | | The solubility of Agl in 1 | | | | (a) $[Ag^+] = 1.8$ | $8 \times 10^{-9} M$; [P | $[b^{2+}] = 1.7 \times 10^{-5}$ | ³ M | | | approximately (in mol l^{-1}) | | [2003] | | (b) $[Ag^+] = 1.8$ | $8 \times 10^{-11} M$; [A | $[2b^{2+}] = 1.7 \times 10^{-1}$ | ⁴ M | | | (a) 1.0×10^{-8} | (b) 1.0×10^{-16} | | | (c) $[Ag^+] = 1.8$ | $8 \times 10^{-7} M$; [Pl | $[0.02^{2+}] = 1.7 \times 10^{-6}$ | М | | | (c) 1.0×10^{-12} | (d) 1.0×10^{-10} | | | (d) $[Ag^+] = 1.8$ | $8 \times 10^{-11} M$; [1] | $[2b^{2+}] = 8.5 \times 10^{-5}$ | ⁻⁵ M | | the formation of (a) $K[AlF_3H]$ | (b) $K_3[AlF_3H_3]$ | 1.0×10^{-12} . The coraqueous solution of t | ncentration of Hydroxyl ions in $0.01 M$
the base would be [2005] | |---|---|--|--| | (c) $K_3[AlF_6]$ | (d) AIH ₃ | (a) 2.0×10^{-6} mol | L^{-1} (b) $1.0 \times 10^{-5} mol L^{-1}$ | | 32. Which of the following | ng salts when dissolved in water will go | (c) $1.0 \times 10^{-6} mol$ | L^{-1} (d) $1.0 \times 10^{-7} mol L^{-1}$ | | hydrolysed | [1989 | | of a solution at 25°C that contains | | (a) NaCl | (b) NH ₄ Cl | $1 \times 10^{-10} M$ of hydro | nium ions, <i>i.e.</i> , H_3O^+ [2007] | | (c) KCI | (d) Na_2SO_4 | (a) 7.000 | (b) 4.000 | | 33. The ionization con | nstant of ammonium hydroxide | (c) 9.000 | (d) 1.000 | | | K. Hydrolysis constant of ammonium | 41 . The <i>pH</i> of 0.001 me | olar solution of <i>HCI</i> will be [1991] | | chloride is | [2009 | (a) 0.001 | (b) 3 | | (a) 5.65×10^{-10} | (b) 6.50×10^{-12} | (c) 2 | (d) 6 | | (c) 5.65×10^{-13} | (d) 5.65×10^{-12} | 42. pH value of $N/10$ | NaOH solution is [1996] | | 34. The most acidic comp | pound in water is [2001 |] (a) 10 | (b) 11 | | (a) AICI ₃ | (b) BeCl ₂ | (c) 12 | (d) 13 | | (c) FeCl ₃ | (d) None of these | solution would be | The hydroxide ion concentration of the [1991] | | | Ag^+ ions in a saturated solution of | f | (b) 10 ⁻¹⁰ | | | $\times 10^{-4} mol L^{-1}$. Solubility product of | 1 | | | $Ag_2C_2O_4$ is | [2017 | | (d) 10 ⁻¹² | | (a) 2.42×10^{-8} | (b) 2.66×10^{-12} | | e resulting solution when equal volumes 0.01 <i>M HCl</i> are mixed [2015] | | (c) 4.5×10^{-11} | (d) 5.3×10^{-12} | (a) 12.65 | (b) 2.0 | | 36. The solubility of Bas | SO_4 in water $2.42 \times 10^3 \mathrm{gL^{-1}}$ at $298 \mathrm{K}$ | (c) 7.0 | (d) 1.04 | | The value of solubility | y product (K_{sp}) will be | 45. The concentration of | $[H^+]$ and concentration of $[OH^-]$ of a | | (Given molar mass of | $BaSO_4 = 233 \ g \ mol^{-1}$ [2018] | 0.1 aqueous solution | of 2% ionised weak acid is | | | | [Ionic product of water | $er = 1 \times 10^{-14} $ [1999] | | (a) $1.08 \times 10^{-10} \text{ mol}^2$ | | (a) $2 \times 10^{-3} M$ and | $1.5 \times 10^{-12} M$ | | (c) $1.08 \times 10^{-14} \text{ mol}^2$ | L^{-2} (d) $1.08 \times 10^{-8} \text{mol}^2 L^{-2}$ | (b) $1 \times 10^3 M$ and | $3 \times 10^{-11} M$ | | 37. At 90°C pure water lat this temperature wi | has $[H_3O^+] = 10^{-6} M$, the value of K_w | (c) $0.02 \times 10^{-3} M$ | | | (a) 10^{-6} | (b) 10 ⁻¹² | (d) $3 \times 10^{-2} M$ and | $d 4 \times 10^{-13} M$ | | (c) 10^{-14} | (d) 10 ⁻⁸ | 46. In which of the follow not strictly according | ring arrangements the given sequence is to the property indicated against it | | 38. The ionic product of | f water at $25^{\circ}C$ is 10^{-14} . The ionic | (a) HF < HCl < HR. | [2012] $< HI;$ increasing acidic strength | | product at 90°C will | be [1996] | | Se $<$ H_2 Te; increasing pK_a values | | (a) 1×10^{-20} | (b) 1×10^{-12} | | $H_3 < SbH_3$; increasing acidic character | | (c) 1×10^{-14} | (d) 1×10^{-16} | | $O_2 < PbO_2$; increasing oxidizing power | | | | - 2 - 311 | -2 . DO2; increasing oxidizing power | ${\bf 31.}\ \ {\it AIF}_{\rm 3}\ \ {\rm is\ soluble\ in}\ \ {\it HF}\ \ {\rm only\ in\ presence\ of}\ \ {\it KF}$. It is due to 39. At 25°C, the dissociation constant of a base BOH is 47. What is the [OH-] in the final solution prepared by mixing 20.0 mL of 0.050 M HCl with 30.0 mL of 0.10 M Ba(OH)₂ [2009] - (a) 0.10 M - (b) 0.40 M - (c) 0.0050 M - (d) 0.12 M - 48. Equal volumes of three acid solutions of pH 3,4 and 5 are mixed in a vessel. What will be the H^+ ion concentration in the mixture [2008] - (a) $3.7 \times 10^{-3} M$ - (b) $1.11 \times 10^{-3} M$ - (c) $1.11 \times 10^{-4} M$ - (d) $3.7 \times 10^{-4} M$ - **49**. The hydrogen ion concentration of a $10^{-8}MHCl$ aqueous solution at 298 K ($K_w = 10^{-14}$) is - (a) $9.525 \times 10^{-8} M$ (b) $1.0 \times 10^{-8} M$ - (c) $1.0 \times 10^{-6} M$ - (d) $1.0525 \times 10^{-7} M$ - 50. pH of a 10 M solution of HCl is [1995] - (a) Less than 0 - (b) 2 (c) 0 - (d) 1 - 51. The pH of blood does not appreciably change by a small addition of an acid or a base because blood [1995] - (a) Contains serum protein which acts as buffer - (b) Contains iron as a part of the molecule - (c) Can be easily coagulated - (d) It is body fluid - 52. Which of the following mixtures forms an acid buffer [1981: 1989] - (a) NaOH + HCl - (b) CH₃COOH + CH₃COONa - (c) NH₄OH + NH₄Cl - (d) $H_2CO_3 + (NH_4)_2CO_3$ - 53. A buffer solution has equal volumes of $0.2M\,NH_4OH$ and $0.02M\,NH_4Cl$. The $\,pK_b\,$ of the base is 5. The pH is [1989] (a) 10 (b) 9 (c) 4 - (d)7 - 54. Which of the following pairs constitutes a buffer [2006] NaOH is a strong base because [2001] - (a) HNO₃ and NH₄NO₃ - (b) HCI and KCI - (c) HNO2 and NaNO2 - (d) NaOH and NaCl (a) HCIO₄ and NaClO₄ buffer - (b) CH₃COOH and CH₃COONa - (c) H2CO3 and Na2CO3 - (d) H₃PO₄ and Na₃PO₄ - **56.** A physician wishes to prepare a buffer solution at pH = 3.58that efficiently resists changes in pH yet contains only small concentration of the buffering agents. Which of the following weak acids together with its sodium salt would be best to use [1997] 55. Which one of the following pairs of solution is not an acidic - (a) m chlorobenzoic acid ($pK_a = 3.98$) - (b) p chlorocinnamic acid ($pK_a = 4.41$) - (c) 2, 5 dihydroxy benzoic acid ($pK_a = 2.97$) - (d) Acetoacetic acid ($pK_a = 3.58$) - 57. A buffer solution is prepared in which the concentration of NH_3 is $0.30\,M$ and the concentration of NH_4^+ is $0.20\,M$. If the equilibrium constant, K_b for NH_3 equals 1.8×10^{-5} , what is the pH of this solution (log 2.7=0.43) - (a) 8.73 - (b) 9.08 - (c) 9.43 - (d) 11.72 - 58. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations [2018] [2015] - (i) $60mL\frac{M}{10}HCl + 40mL\frac{M}{10}NaOH$ - (ii) $55mL\frac{M}{10}HCl + 45mL\frac{M}{10}NaOH$ - (iii) $75mL\frac{M}{5}HCl + 25mL\frac{M}{5}NaOH$ - (iv) $100mL\frac{M}{10}HCI + 100mL\frac{M}{10}NaOH$ pH of which one of them will be equal to 1 - (a) (ii) - (b) (i) - (c) (iv) - (d) (iii) #### AIIMS - - (b) It can be oxidised (a) It gives OH ion - (c) It can be easily ionised - (d) Both (a) and (c) ${\bf 2.} \quad \hbox{The strongest Bronsted base in the following anion is} \\$ [2001] - (a) CIO- - (b) ClO₂ - (c) ClO_3^- - (d) CIO₄ - 3. The correct order of basic strength is [2007] - (a) $H_2O < OH^- < CH_3OH < CH_3O^-$ - (b) $CH_3OH < H_2O < CH_3O^- < OH^-$ - (c) $H_2O < CH_3OH < OH^- < CH_3O^-$ - (d) $OH^- < H_2O < CH_3O^- < CH_3OH$ - **4.** On adding 0.1 M solution each of $[Ag^+]$, $[Ba^{2+}]$, $[Ca^{2+}]$ in a Na_2SO_4 solution, species first precipitated is **[2008]** $$[K_{sp}BaSO_4=10^{-11},K_{sp}CaSO_4=10^{-6},K_{sp}Ag_2SO_4=10^{-5}]$$ - (a) Ag_2SO_4 - (b) BaSO₄ - (c) CaSO₄ - (d) All of these - **5.** The solubility product of As_2O_3 is 10.8×10^{-9} . It is 50% dissociated in saturated solution. The solubility of salt is [2007] (a) 10^{-2} - (b) 2×10^{-2} - (c) 5×10^{-3} - (d) 5.4×10^{-9} - **6.** pH value of a solution, whose hydronium ion concentration is $6.2 \times 10^{-9} mol/L$, is [2000] - (a) 6.21 - (b) 7.21 - (c) 7.75 - (d) 8.21 - 7. What is the pH value of $1 MH_2SO_4$ [2008] (a) 0 (b) -0.213 (c) -2 - (d) 0.3010 - **8.** When 10 mL of 0.1 M acetic acid $(pK_a = 5.0)$ is titrated against 10 mL of 0.1M ammonia solution $(pK_b = 5.0)$,
the equivalence point occurs at pH [2005] - (a) 5.0 - (b) 6.0 - (c) 7.0 - (d) 9.0 - **9.** At $80^{\circ}C$, distilled water has $[H_3O^+]$ concentration equal to 1×10^{-6} mole/litre. The value of K_w at this temperature will be [1994; 2002] - (a) 1×10^{-6} - (b) 1×10^{-9} - (c) 1×10^{-12} - (d) 1×10^{-15} - **10.** What is the *pH* of 0.01 *M* glycine solution? For glycine, $Ka_1 = 4.5 \times 10^{-3}$ and $Ka_2 = 1.7 \times 10^{-10}$ at 298 *K* [2004] - (a) 3.0 - (b) 10.0 (c) 6.1 - (d) 7.2 - **11.** The pH of a solution at $25^{\circ}C$ containing 0.10m sodium acetate and 0.03m acetic acid is $(pK_a \text{ for } CH_3COOH = 4.57)$ [2002] - (a) 4.09 - (b) 5.09 - (c) 6.10 - (d) 7.09 - **12.** Which one of the following is not a buffer solution [2003] - (a) $0.8MH_2S + 0.8MKHS$ - (b) $2MC_6H_5NH_2 + 2MC_6H_5NH_3Br$ - (c) $3MH_2CO_3 + 3MKHCO_3$ - (d) $0.05 M KCIO_4 + 0.05 M HCIO_4$ - **13.** 40 mL of 0.1 M ammonia solution is mixed with 20 mL of 0.1 M HCl. What is the pH of the mixture (p K_b of ammonia solution is 4.74) [2006] - (a) 4.74 - (b) 2.26 - (c) 9.26 - (d) 5.00 #### 8. Assertion and Reason Read the assertion and reason carefully to mark the correct option out of the options given below: - (a) If both assertion and reason are true and the reason is the correct explanation of the assertion. - (b) If both assertion and reason are true but reason is not the correct explanation of the assertion. - (c) If assertion is true but reason is false. - (d) If the assertion and reason both are false. - (e) If assertion is false but reason is true. - 1. Assertion pH of hydrochloric acid solution is less than that of acetic acid solution of the same concentration. Reason In equimolar solutions, the number of titrable protons present in hydrochloric acid is less than that present in acetic acid. [NDA 1999] 2. Assertion : An ionic product is used for any types of electrolytes whereas solubility product is applicable only to sparingly soluble salts. Reason : Ionic product is defined at any stage of the reaction whereas solubility product is only applicable to the saturation stage. [AIIMS 2001] 3. Assertion : Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution ; will first precipitate AgBr rather than AgCl. Reason : K_{sp} of $AgCl < K_{sp}$ of AgBr. [AIIMS 2004] **4.** Assertion : The pK_a of acetic acid is lower than that of phenol. Reason : Phenoxide ion is more resonance stabilized. [AIIMS 2004] 5. Assertion : Sb (III) is not precipitated as sulphide when in its alkaline solution H_2S is passed. Reason : The concentration of S^{2-} ion in alkaline medium is inadequate for precipitation. [AIIMS 2004] **6.** Assertion : On mixing 500 mL of $10^{-6}M$ Ca²⁺ ion and 500 mL of $30 \times 10^{-6}~M~F^-$ ion, the precipitate of CaF2 will be obtained. $K_{sp}(CaF_2 = 10^{-18})$ Reason: If K_{sp} is greater than ionic product, a precipitate will develop. [AIIMS 2007] 7. Assertion : NaCl is precipitated when HCl gas is passed in a saturated solution of NaCl. Reason : HCl is strong acid. [AIIMS 2007] # 8. Ionic Equilibrium – Answers Keys | 1 | С | 2 | d | 3 | С | 4 | С | 5 | a | |--------------------------------|----------------|------------------------------------|-------------------------|--------------------------------|-----------------|--------------------------------|-------------|---------------------------|---------------| | 6 | a | 7 | b | 8 | a | 9 | a | 10 | b | | 11 | С | 12 | b | | | | | | | | . Ac | cids | and B | ases | 5 | | | | | | | 1 | b | 2 | b | 3 | a | 4 | b | 5 | С | | 6 | a | 7 | a | 8 | a | 9 | С | 10 | a | | 11 | d | 12 | b | 13 | d | 14 | d | 15 | a | | 16 | d | 17 | a | 18 | d | 19 | a | 20 | d | | 21 | a | 22 | b | 23 | a | 24 | b | 25 | С | | 26 | С | 27 | С | 28 | d | 29 | a | 30 | с | | 31 | С | 32 | ь | 33 | b | 34 | b | 35 | a | | 36 | ь | 37 | a | 38 | d | 39 | ь | 40 | С | | | | | | _ | | | | | | | S | | non
pility
salt Hy | Prod | uct, | t, Iso
Ionic | ohyd
Pro | ric
duc | Soluti
t of W | ons,
/ater | | S | Solub | ility | Prod | uct, | t, Isolonic | ohyd
Prod | ric
duc | Soluti
t of W | ons,
/ater | | a | Solub
and S | oility
Salt Hy | Prod
/drol | uct,
ysis | lonic | Pro | duct | t of W | /ater | | 1 | Solub
and S | oility
Salt Hy | Prod
ydrol
c | uct,
ysis | b | Proc | b | of W | ater
a | | 1
6 | d
c | oility
Salt Hy
2
7 | Prod
ydrol
c | uct,
ysis
3
8 | b
c | 4
9 | b
b | 5
10 | a
d | | 1
6
11 | d c | oility
salt Hy
2
7 | c
c | uct,
ysis 3 8 | b
c
d | 4
9
14 | b
b | 5
10
15 | a
d
c | | 1
6
11
16 | d c c d | pility palt Hy 2 7 12 17 | Prod
ydrol
c
c | 3
8
13 | b
c
d | 4
9
14 | b
b
c | 5
10
15
20 | a d c | | 1
6
11
16
21
26 | d c c d d | 2 7 12 17 22 27 | c c c d a | 3
8
13
18
23
28 | b c d b a d | 4
9
14
19
24
29 | b b c d c c | 5
10
15
20 | a d c c b | | 1
6
11
16
21
26 | d c c d d | alt Hy 2 7 12 17 22 27 ogen | c c c d a | 3
8
13
18
23
28 | b c d b a d | 4
9
14
19
24
29 | b b c d c c | 5
10
15
20
25 | a d c c b | | 11 | a | 12 | ь | 13 | a | 14 | a | 15 | d | |-------|------|--------|-------|-----|------|----|---|----|---| | 16 | С | 17 | d | 18 | a | 19 | С | 20 | b | | 21 | С | 22 | c | 23 | a | 24 | b | 25 | b | | 26 | b | 27 | d | 28 | b | 29 | d | 30 | a | | 31 | a | 32 | a | 33 | b | 34 | d | 35 | c | | 36 | С | 37 | b | 38 | a | 39 | b | 40 | b | | 41 | С | 42 | b | 43 | d | 44 | d | 45 | b | | 46 | ab | 47 | a | 48 | b | 49 | b | 50 | d | | 51 | b | 52 | b | 53 | С | | | | | | 5. II | T-JE | E/ Ale | EEE | | | | | | | | 1 | С | 2 | С | 3 | d | 4 | С | 5 | d | | 6 | d | 7 | d | 8 | a | 9 | a | 10 | b | | 11 | d | 12 | С | 13 | d | 14 | b | 15 | a | | 16 | d | 17 | a | 18 | d | 19 | ь | 20 | d | | 21 | d | 22 | b | 23 | С | 24 | a | 25 | b | | 26 | d | 27 | d | 28 | d | 29 | d | 30 | b | | 31 | b | 32 | С | 33 | С | 34 | С | 35 | a | | 36 | a | 37 | b | 38 | С | 39 | a | 40 | d | | 41 | a | 42 | d | 43 | a | 44 | С | 45 | С | | 46 | ь | 47 | С | 48 | d | 49 | a | 50 | b | | 51 | С | 52 | a | | | | | | | | 6. N | EET/ | AIPN | AT/ C | BSE | -PM1 | | | | | | 1 | a | 2 | b | 3 | С | 4 | d | 5 | d | | 6 | С | 7 | a | 8 | d | 9 | b | 10 | a | | 11 | С | 12 | a | 13 | d | 14 | d | 15 | c | | 16 | d | 17 | a | 18 | d | 19 | ь | 20 | c | | 21 | ь | 22 | a | 23 | a | 24 | c | 25 | b | | 26 | b | 27 | С | 28 | b | 29 | С | 30 | a | | 31 | С | 32 | b | 33 | a | 34 | c | 35 | d | | 36 | a | 37 | ь | 38 | ь | 39 | d | 40 | b | | 41 | b | 42 | d | 43 | b | 44 | a | 45 | a | |----|---|----|---|----|---|----|---|----|---| | 46 | b | 47 | a | 48 | d | 49 | d | 50 | c | | 51 | a | 52 | b | 53 | a | 54 | c | 55 | a | | 56 | d | 57 | С | 58 | a | | | | | | . AIIMS | | | | | | | | | | | | |---------|---|----|---|----|---|---|---|----|---|--|--| | 1 | d | 2 | a | 3 | С | 4 | b | 5 | b | | | | 6 | d | 7 | d | 8 | с | 9 | С | 10 | d | | | | 11 | b | 12 | d | 13 | С | | | | | | | | 8. Assertion & Reason | | | | | | | | | | |-----------------------|---|---|---|---|---|---|---|---|---| | 1 | с | 2 | b | 3 | С | 4 | c | 5 | c | | 6 | d | 7 | ь | | | | | | |