24. The p -Block Elements (Nitrogen, Oxygen, Halogen and Noble Family) – Multiple Choice Questions

1. Nitrogen Family

- 1. The strongest reducing agent among the following is
 - (a) NH_3
- (b) PH₃
- (c) AsH_3
- (d) SbH₂
- 2. Which of the following is not hydrolysed
 - (a) AsCl₃
- (b) PF
- (c) SbCl₃
- (d) NF₃
- 3. Electrolysis temperature is maximum for
 - (a) AsH₃
- (b) NH₃
- (c) PH₃
- (d) SbH₃
- 4. Which does not form complex
 - (a) N

(b) P

(c) As

- (d) Bi
- 5. Correct order of decreasing thermal stability is as
 - (a) $NH_3 > PH_3 > AsH_3 > SbH_3$
 - (b) $PH_3 > NH_3 > AsH_3 > SbH_3$
 - (c) $AsH_3 > PH_3 > NH_3 > SbH_3$
 - (d) $SbH_3 > AsH_3 > PH_3 > NH_3$
- Calcium cyanamide on treatment with steam under pressure gives ammonia and
 - (a) Calcium carbonate
- (b) Calcium hydroxide
- (c) Calcium oxide
- (d) Calcium bicarbonate
- 7. Which of the following has the highest proton affinity
 - (a) Stibine (SbH3)
- (b) Arsine (AsH_3)
- (c) Phosphine (PH₃)
- (d) Ammonia (NH₃)
- 8. Which of the following exhibits highest solubility in water
 - (a) NH_3
- (b) *PH*₃
- (c) AsH₂
- (d) SbH₃

- **9.** P_4O_{10} is not used to dry NH_3 gas because
 - (a) P_4O_{10} is basic and NH_3 is acidic
 - (b) P_4O_{10} is acidic and NH_3 is basic
 - (c) P_4O_{10} is not a drying agent
 - (d) P_4O_{10} reacts with moisture in $N\!H_3$
- **10.** An element (X) forms compounds of the formula XCl_3 , X_2O_5 and Ca_3X_2 , but does not form XCl_5 , which of the following is the element X
 - (a) B

(b) A1

(c) N

- (d) P
- **11.** Which of the following elements can be involved in $p\pi d\pi$ bonding
 - (a) Carbon
- (b) Nitrogen
- (c) Phosphorus
- (d) Boron
- 12. Which of the following elements does not show allotropy
 - (a) Nitrogen
- (b) Bismuth
- (c) Antimony
- (d) Arsenic
- 13. Elements of group- 15 form compounds in +5 oxidation state. However, bismuth forms only one well characterised compound in +5 oxidation state. The compound is
 - (a) Bi₂O₅
- (b) BiF5
- (c) BiCl₅
- (d) Bi_2S_5
- **14.** Bond dissociation enthalpy of E-H (E= element) bonds are given below. Which of the compounds will act as strongest reducing agent

Compound	NH ₃	PH ₃	AsH ₃	SbH ₃
$\Delta_{diss}(E-H)/kJ mol^{-1}$	389	322	297	255

- (a) NH_3
- (b) PH₃
- (c) AsH_3
- (d) SbH_3

 Match List I (Molecules) with List II (Boiling points) and select the correct answer

	List I		List II
(A)	NH ₃	(i)	290 K
(B)	PH ₃	(ii)	211 K
(C)	AsH ₃	(iii)	186 K
(D)	SbH ₃	(iv)	264 K
(E)	BiH ₃	(v)	240 K

- (a) A iii, B ii, C v, D iv, E i
- (b) A v, B iii, C ii, D iv, E i
- (c) A i, B iv, C v, D ii, E iii
- (d) A i, B ii, C iii, D iv, E v
- 16. Which of the following statements is wrong
 - (a) Single N-N bond is stronger than the single P-P bond
 - (b) PH₃ can act a ligand in the formation of coordination compound with transition elements.
 - (c) NO_2 is paramagnetic in nature
 - (d) Covalency of nitrogen in N_2O_5 is four.
- 17. Which of the following represents laughing gas
 - (a) NO
- (b) N₂O
- (c) NO₂
- (d) N_2O_3
- 18. The correct order of acidic nature of oxides is in the order
 - (a) $NO < N_2O < N_2O_3 < NO_2 < N_2O_5$
 - (b) $N_2O < NO < N_2O_3 < NO_2 < N_2O_5$
 - (c) $N_2O_5 < NO_2 < N_2O_3 < NO < N_2O$
 - (d) $N_2O_5 < N_2O_3 < NO_2 < NO < N_2O$
- 19. Nitrogen dioxide is released by heating
 - (a) $Pb(NO_3)_2$
- (b) KNO₃
- (c) NaNO2
- (d) NaNO₃
- **20.** Urea is preferred to ammonium sulphate as a nitrogenous fertilizer because
 - (a) It is more soluble in water
 - (b) It is cheaper than ammonium sulphate
 - (c) It is quite stable
 - (d) It does not cause acidity in the soil

- 21. Liquid ammonia is used for refrigeration because
 - (a) It has a high dipole moment
 - (b) It has a high heat of vaporisation
 - (c) It is basic
 - (d) It is a stable compound
- **22.** Inertness of N_2 gas is due to
 - (a) No vacant d-orbital
 - (b) High dissociation energy
 - (c) High electronegativity
 - (d) None
- 23. The carbonate which does not leave a residue on heating is
 - (a) Na₂CO₃
- (b) Ag_2CO_3
- (c) CuCO₃
- (d) $(NH_4)_2CO_3$
- 24. Aqua-regia is
 - (a) 1:3 conc. HNO_3 and conc. HCl
 - (b) 1:2 conc. HNO3 and conc. HCl
 - (c) 3:1 conc. HNO3 and conc. HCl
 - (d) 2:1 conc. HNO3 and conc. HCI
- 25. Conc. HNO₃ can be stored in container of
 - (a) Al

(b) Sn

(c) Cu

- (d) Zn
- **26.** In the nitrogen family, the H M H bond angle in the hydrides MH_3 gradually becomes closer to 90° on going from N to Sb. This shows that gradually
 - (a) The basic strength of hydrides increases
 - (b) Almost pure p-orbitals are used for M-H bonding
 - (c) The bond energies of M-H bond increase
 - (d) The bond pairs of electrons become nearer to the central atom
- 27. Ammonia, on reaction with excess of chlorine, gives
 - (a) NCl₃ and HCl
- (b) N₄ and NH₄Cl
- (c) NCl₃ and NH₄Cl
- (d) N₂ and HCl
- **28.** When heated NH_3 is passed over CuO, gas evolved is
 - (a) N_2

- (b) N₂O
- (c) HNO₃
- (d) NO₂

29.	Which one of the following s (a) It is very stable in aqueo	2	38.		en plants and animals		
	(b) It cannot act both as an				orm of		
	(c) It cannot act as an oxidis			(a) A	Ammonia	(b) Elements of ni	trogen
	(d) It cannot act as reducing			(c) I	Nitrates	(d) Nitrides	
30.	• •	s of HNO3 with Zn are given as	39.		hydrolysis of NCI ₃ by		n release
	PSE LARM 14 E EL SE	V		(a)	NH ₂ OH and HOCI	(b) NH_2NH_2 and	HCI
	$Zn + conc. HNO_3 \longrightarrow Zn$	$(NO_3)_2 + X + H_2O(i)$		(c)	NH ₄ OH and HOCI	(d) NH_2CI and I	HOCI
	$Zn + \text{dilute. } HNO_3 \longrightarrow Z$	$Zn(NO_3)_2 + Y + H_2O(ii)$	40.	Whi	ch of the following state	ements about liquid n	itrogen is true
	In reactions (i) and (ii), the dare	compounds X and Y respectively,			t is unreactive		
	(a) NO ₂ and NO	// \ NO			t is used in cryosurgery		
	(c) NO and NO ₂	(b) NO ₂ and NO ₂		(c) I	t does not decompose	organic compounds	
01		(d) NO ₂ and NH ₄ NO ₃		(d) I	t is very stable		
)1.	When lightning flash is prod		41.		queous solution of nitro	2	e of salts, can
	(a) Nitrous oxide	(b) Nitrogen dioxide		be ol	otained from the reactio	n	
	(c) Dinitrogen pentoxide	(d) Nitric oxide		(a) I	$Ba(NO_2)_2 + H_2SO_4 - \cdots$	\rightarrow	
32.	A mixture of ammonia are presence of Pt gauze forms	and air at about $800^{\circ}C$ in the		(b) I	$NaNO_2 + H_2SO_4 - Cold$	1	
	(a) N ₂ O	(b) NO		(c) I	$NH_4NO_2 + H_2SO_4$ —	\rightarrow	
	(c) NH ₂ OH	(d) N_2O_3		(d) I	$KNO_3 + HNO_3 \longrightarrow$		
33.	A hydride of nitrogen which	is acidic is	42.	At gi	ven temperature and p	ressure adsorption o	f which gas of
	(a) NH ₃	(b) N_2H_4			ollowing will take place		······································
	(c) N_2H_2	(d) N ₃ H		(a) I	Di hydrogen	(b) Di oxygen	
34.	Nitric acid can be obtained	from ammonia via the formations			Ammonia	d) Di nitrogen	
	of the intermediate compou		43.		metal which does not fo dilute nitric acid is	orm ammonium nitra	te by reaction
	(a) Nitric oxides and nitroge			(a) A		(b) C-	
	(b) Nitrogen and nitric oxide	es		(c) F		(b) Fe	
	(c) Nitric oxide and dinitrog	en pentoxide				(d) <i>Mg</i>	
	(d) Nitrogen and nitrous ox	ide	44.		own ring is formed in t	he ring test for NO_3^-	ion. It is due
35.	When ammonia reacts with containing nitrogen is	h sodium hypochlorite, product			e formation of $Fe(H_2O)_5 (NO)]^{2+}$	(b) FeSO ₄ .NO ₂	
	(a) N ₂	(b) N ₂ O		(c) [Fe(H ₂ O) ₄ (NO) ₂] ²⁺	(d) FeSO ₄ .HNO ₃	
	(c) NH ₂ OH	(d) $H_2N.NH_2$	45.		heating ammonium		
36.	Inorganic graphite is	garan eser fan Spielsking in 1998			rately we get		ariam aziae
	(a) $B_3N_3H_6$	(b) B_3N_3		(a) I	N_2 in both cases		
	(c) SiC	(d) <i>Fe</i> (<i>CO</i>) ₅			N_2 with ammonium d zide	ichromate and NO	with barium
37.	Which of the following oxid stable	de of nitrogen is most thermally		(c) 1	N_2O with ammonium zide	dichromate and N_2	with barium
	(a) N_2O_5	(b) N ₂ O				diahaan 1 200	al. 1
	(c) NO	(d) N_2O_3			V ₂ O with ammonium o zide	dictromate and NO_2	with barium

46.		O_3 , we get NO gas by catalytic e moles of NO produced by the NH_3 will be
	(a) 2	(b) 3
	(c) 4	(d) 6

- 47. Maximum covalency of nitrogen is......
 - (a) 3

(b) 5

(c) 4

- (d) 6
- **48.** P_4O_6 reacts with water to give
 - (a) H_3PO_3
- (b) $H_4P_2O_7$
- (c) HPO₃
- (d) H_3PO_4
- 49. Phosphine is not obtained by the reaction
 - (a) White P is heated with NaOH
 - (b) Red P is heated with NaOH
 - (c) Ca_3P_2 reacts with water
 - (d) Phosphorus trioxide is boiled with water
- **50.** By the action of hot conc. H_2SO_4 , phosphorus changes to
 - (a) Phosphorus acid
- (b) Orthophosphoric acid
- (c) Metaphosphoric acid
- (d) Pyrophosphoric acid
- 51. Sodium hydroxide solution reacts with phosphorus to give phosphine. To bring about this reaction, we need
 - (a) White phosphorus and dil. NaOH
 - (b) White phosphorus and conc. NaOH
 - (c) Red phosphorus and dil. NaOH
 - (d) Red phosphorus and conc. NaOH
- 52. The three important oxidation states of phosphorus are
 - (a) -3, +3 and +5
- (b) -3, +3 and -5
- (c) -3, +4 and -4
- (d) -3, +3 and +4
- **53.** P_2O_5 is used extensively as a /an
 - (a) Reducing agent
- (b) Oxidising agent
- (c) Dehydrating agent
- (d) Preservative
- 54. Which of the following acids forms three series of salts
 - (a) H_3PO_2
- (b) H_3BO_3
- (c) H_3PO_4
- (d) H_3PO_3
- 55. The oxidation state of central atom in the anion of compound NaH_2PO_2 will be
 - (a) + 3
- (b) + 5
- (c) + 1
- (d) 3

- **56.** In solid state PCl_5 is a
 - (a) Covalent solid
 - (b) Octahedral structure
 - (c) Ionic solid with [PCI₆]⁺ octahedral and [PCI4] tetrahedral
 - (d) Ionic solid with [PCl₄]⁺ tetrahedral and $[PCl_6]$ octahedral
- **57.** $HNO_3 + P_2O_5 \rightarrow A + B$

A is an oxy-acid of phosphorus and B is an oxide of nitrogen. A and B respectively are

- (a) H_3PO_4 , N_2O_3
- (b) HPO_3 , N_2O_3
- (c) HPO_3 , N_2O_5 (d) H_3PO_3 , N_2O_5
- 58. The role of phosphate in detergent powder is to
 - (a) Control pH level of the detergent water mixture
 - (b) Remove Ca^{2+} and Mg^{2+} ions from the water that causes the hardness of water
 - (c) Provide whiteness to the fabrics
 - (d) Form solid detergent as phosphate-less detergent are liquid in nature
- 59. Sides of match box have coating of
 - (a) Potassium chlorate, red lead
 - (b) Potassium chlorate, antimony sulphide
 - (c) Antimony sulphide, red phosphorus
 - (d) Antimony sulphide, red lead
- 60. The maximum number of P-H bonds are contained in which of the following molecules
 - (a) H_3PO_2
- (b) H_3PO_3
- (c) H_3PO_4
- (d) $H_4P_2O_7$
- **61.** Which of the following contains P-O-P bond

 - (a) Hypophosphorous acid (b) Phosphorus acid
 - (c) Pyrophosphoric acid
- (d) Orthophosphoric acid
- 62. On heating with concentrated NaOH solution in an inert atmosphere of CO2, white phosphorous gives a gas. Which of the following statement is incorrect about the gas
 - (a) It is highly poisonous and has smell like rotten fish
 - (b) It is less basic than NH3
 - (c) It's solution in water decomposes in the presence of light
 - (d) It is more basic than NH_3

(a) H_2O (c) H_2Te	(b) <i>H</i> ₂ <i>S</i>
(c) H_2Te	
	(d) H ₂ Se
6. Which of the following ac	cts as pickling agent
(a) HNO ₃	(b) HCl
(c) H ₂ SO ₄	(d) HNO ₂
 Which one of the followi in -2 oxidation state 	ng group 16 elements does not exist
(a) S	(b) Se
(c) O	(d) Po
(e) Te	The argust of the Lay Tell Payment of the
8. The disease kala azar is o	cured by
(a) Colloidal antimony	(b) Milk of magnesia
(c) Argyrols	(d) Colloidal gold
A black sulphide when re white compound is	eacts with ozone becomes white. The
(a) ZnSO ₄	(b) <i>PbSO</i> ₄
(c) BaSO ₄	(d) CaSO ₄
10. Which of the following g	gas is used in artificial respiration
(a) $O_2 + CO_2$	(b) O ₂ + CO
(c) $O_2 + H_2$	(d) All of these
11. $KO_2 + CO_2 \rightarrow ?$ (gas)	
(a) H ₂	(b) N ₂
(c) O ₂	(d) CO
12. Oxygen is not evolved	on reaction of ozone with
(a) H ₂ O ₂	(b) SO ₂
(c) Hg	(d) <i>KI</i>
13. Electron affinity is posit	tive when
(a) O is formed from	O (b) O^{2-} is formed from O^{-}
(c) O+ is formed from	O (d) O^{3-} is formed from O^{-}
14. Which of the following	is a suboxide
(a) Ba ₂ O	(b) CaCO ₃
(c) C ₃ O ₂	(d) ZnO
	 (c) H₂SO₄ 7. Which one of the following in -2 oxidation state (a) S (c) O (e) Te 8. The disease kala azar is often and a composition of the following of the

15	Match the coo	List I v les give	with Lis n belov	st II an	d select the correct answer usir ts	g 2		n sulphur is boiled ound formed is	with Na_2SO_3 solution, the
	Lis	t I			List II			odium sulphide	(b) Sodium sulphate
	(A) Per	oxide			(1) C ₃ O ₂			odium persulphate	(d) Sodium thiosulphate
	(B) Sup	peroxid	e		(2) PbO ₂	2:	2. Which	n of the following mixt	ure is chromic acid
	(C) Dio						(a) K	$C_2Cr_2O_7$ and conc. H_2	SO_4
					(3) KO ₂		(b) <i>K</i>	$C_2Cr_2O_7$ and HCI	
	(D) Sub				(4) H_2O_2			S_2SO_4 and conc. H_2S	O_4
	Со	des						I_2SO_4 and HCI	
	(a) A	В	С	D		0.4		nolecular formula of su	ılphur is
	4	3	2	1		Z	(a) S		(b) S ₂
	(b) A	В	С	D					(d) S ₈
	3	2	1	4			(c) S		
	(c) A	В	С	D		24			g agent in its reaction with
	4	2	3	1			(a) H	$C_2C_2O_4$	(b) Ba(OH) ₂
	(d) A	В	С	D			(c) K	ОН	(d) <i>Zn</i>
	4	1	2	3		25	. Conc.	H_2SO_4 is diluted	
16	When S	SO_2 is j	passed	through	n cupric chloride solution		(a) By	adding water in H_2 S	SO ₄
	(a) A w	hite pre	cipitate	is obta	ained		(b) By	adding H_2SO_4 in wa	ater
	(b) The solution becomes colourless			(c) By adding glacial acetic acid in H_2SO_4					
	(c) The solution becomes colourless and a white precipitate of Cu_2Cl_2 is obtained		2	(d) None of the above					
						26	. SO ₂ +	$H_2S \rightarrow \text{product. The}$	e final product is
	(d) No v						(a) H	$_{2}O+S$	(b) H ₂ SO ₄
17.	Bleachir	g actio	n of So	O_2 is di	ie to		(c) H	"SO ₃	(d) $H_2S_2O_3$
	(a) Redu	ıction			(b) Oxidation	27		-	
	(c) Hydi	olysis			(d) Its acidic nature			nmonium sulphate	not undergo hydrolysis in water
18.				during	the manufacture of H_2SO_4 by			odium sulphate	
	contact p			ida				alcium sulphate	
	(a) H_2S	O_4 (co	nc.)	(b) H ₂ SO ₄ (dil.)			the salts will hydrolys	se.
	(c) H ₂ S	O_4		(d) $H_2S_2O_7$	28			noderately strong oxidising agent
	When co black due		SO ₄ co	omes in	contact with sugar, it becomes		It oxid	ises both metals and n	con-metals. Which of the following onc. H_2SO_4 into two gaseous
	(a) Hydr	olysis		(b) Hydration		produc	cts	
	(c) Deco	ourisat	ion	(d) Dehydration		(a) Ci	u	(b) S
20.	Which or	e is kn	own as	oil of v	itriol		(c) C		(d) <i>Zn</i>
	(a) H ₂ S(b) H ₂ SO ₄	29		cid in which $O-O$ be	onding is present is
							(a) H	$_2S_2O_3$	(b) $H_2S_2O_6$
	(c) H_2S_2	U_7		(d) $H_2S_2O_8$		(c) H	$_{2}S_{2}O_{8}$	(d) H ₂ S ₄ O ₆

20	Sulphur	on	boiling	with	NaOH	solution gives	
----	---------	----	---------	------	------	----------------	--

- (a) $Na_2S_2O_3 + NaHSO_3$
- (b) $Na_2S_2O_3 + Na_2S$
- (c) $Na_2SO_3 + H_2S$ (d) $Na_2SO_3 + SO_3$
- 31. In qualitative analysis when H_2S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO3, it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives.....
 - (a) Deep blue precipitate of Cu (OH)₂
 - (b) Deep blue solution of $[Cu(NH_3)_4]^{2+}$
 - (c) Deep blue solution of $Cu(NO_3)_2$
 - (d) Deep blue solution of $Cu(OH)_2.Cu(NO_3)_2$
- 32. Which of the following is not tetrahedral in shape
 - (a) NH₄⁺
- (b) SiCl

(c) SF₄

- (d) SO₄²⁻
- 33. Which of the following are peroxoacids of sulphur
 - (a) H_2SO_5 and $H_2S_2O_8$
- (b) H_2SO_5 and $H_2S_2O_7$
- (c) $H_2S_2O_7$ and $H_2S_2O_8$ (d) $H_2S_2O_6$ and $H_2S_2O_7$
- 34. The most efficient agent for the absorption of SO₃ is
 - (a) 80% H₂SO₄
- (b) 98% H₂SO₄
- (c) 50% H₂SO₄
- (d) $20\% H_2S_2O_7$
- 35. The oxidation number of sulphur is +4 in
 - (a) H_2S
- (b) CS₂
- (c) Na₂SO₄
- (d) Na_2SO_3

Halogen Family

- 1. Bad conductor of electricity is
 - (a) H_2F_2
- (b) HCl
- (c) HBr
- (d) HI
- Which of the following is the weakest acid
 - (a) HF
- (b) HCI
- (c) HBr
- (d) HI
- 3. Sea weed is employed as a source of manufacture of
 - (a) F

- (b) I
- (c) Br
- (d) CI

- 4. Aqueous solution of which of the following acids cannot be kept in a bottle of glass
 - (a) HF

- (b) HCI
- (c) HBr
- (d) HI
- 5. Which one of the following is the most basic
 - (a) I

(b) Br

(c) C1

- (d) F
- The lattice energy of the lithium halides is in the following order
 - (a) LiF > LiCl > LiBr > LiI (b) LiCl > LiF > LiBr > LiI
 - (c) LiBr > LiCl > LiF > LiI (d) LiI > LiBr > LiCl > LiF
- 7. Among Cl^- , Br^- , I^- , the correct order for being oxidise to dihalogen is [CPMT 1999]

 - (a) $I^- > Cl^- > Br^-$ (b) $Cl^- > Br^- > I^-$
 - (c) $I^- > Br^- > Cl^-$ (d) $Br^- > I^- > Cl^-$
- 8. On addition of conc. H₂SO₄ to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because
 - (a) H_2SO_4 reduces HI to I_2
 - (b) HI is of violet colour
 - (c) HI gets oxidised to I_2
 - (d) HI changes to HIO3
- 9. Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy
 - (a) HF
- (b) HCI
- (c) HBr
- (d) HI
- 10. Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power

lon	C1O ₄	IO ₄	BrO ₄
Reduction potential E-/V	E° = 1.19V	$E^{\Theta} = 1.65V$	$E^{\Theta} = 1.74V$

- (a) $CIO_4^- > IO_4^- > BrO_4^-$
- (b) $IO_4^- > BrO_4^- > CIO_4^-$
- (c) $BrO_4^- > IO_4^- > CIO_4^-$
- (d) $BrO_4^- > CIO_4^- > IO_4^-$
- 11. Which of the following is isoelectronic pair
 - (a) ICl₂, ClO₂
- (b) BrO_{2}^{-} , BrF_{2}^{+}
- (c) CIO2, BrF
- (d) CN-, O3

12.	which one of the following	acids is the weakest	21.	. Which of the follow	ing has the lowest solubility
	(a) HCIO	(b) HBr		(a) CaF ₂	(b) CaCl ₂
	(c) HCIO ₃	(d) HCl		(c) CaBr ₂	(d) <i>CaI</i> ₂
13 .	In which case, the order of	acidic strength is not correct	22.	. The more activenes	ss of fluorine is due to
	(a) $HI > HBr > HCI$			(a) F-F bond has le	ess energy
	(b) $HIO_4 > HBrO_4 > HCIO$	04		(b) F_2 is gas at no	rmal temperature
	(c) $HCIO_4 > HCIO_3 > HC$	IO_2		(c) Its electron affir	nity is maximum
	(d) $HF > H_2O > NH_3$			(d) F-F bond has m	nore energy
14.	The stability of interhaloger	n compounds follows the order	23.	. With cold and dilute	e sodium hydroxide, fluorine reacts to give
	(a) $IF_3 > BrF_3 > CIF_3$			(a) NaF and OF_2	(b) $NaF + O_3$
	(c) $CIF_3 > BrF_3 > IF_3$	(d) $CIF_3 > IF_3 > BrF_3$		(c) O_2 and O_3	(d) $NaF + O_2$
15.	Which of the following has	lowest boiling point	24.	. The alkali metal h insoluble because	nalides are soluble in water but LiF is
	(a) HF	(b) HCl		(a) It is amphoteric	
	(c) HBr	(d) <i>HI</i>		(b) The Li−F bor	
16.	The correct order of interhalogen are	pseudohalide, polyhalide and		(c) Its lattice energy	is high
	(a) BrI_2^-, OCN^-, IF_5	(b) IF_5 , BrI_2^- , OCN^-		(d) Li ⁺ ion is least	hydrated
	(c) OCN ⁻ , IF ₅ , BrI ₂ ⁻	(d) OCN ⁻ , BrI ₂ , IF ₅	25.	. Which of the follow	ing molecule is theoritically not possible
17		$X_2 + S \rightarrow SX_4$ is shown by sulphur		(a) OF ₄	(b) <i>OF</i> ₂
17.	when X is	$N_2 + O \rightarrow ON_4$ is shown by surplicit		(c) SF ₄	(d) O_2F_2
	(a) Fluorine or chlorine		26.	. When fluoride is he	eated with conc. H_2SO_4 and MnO_2 , the
	(b) Chlorine only			gas evolved is	2 7 2
	(c) Chlorine and bromine	only		(a) F ₂	(b) SF
	(d) F, Cl, Br all			(c) HF	(d) None
18.		oxyacid that contains the halogen	27.	. To purify fluorine g	as, fumes of HF are removed by
	atom in tripositive oxidation (a) Fluorine	(b) Chlorine		(a) Solid NaF	(b) H_2 gas
	(c) Bromine	(d) Iodine		(c) Solid KHF ₂	(d) None of these
19.		ganese reacts with a halogen acid	28.	. The property which	is not true about fluorine is
	to give greenish yellow ga	s. When excess of this gas reacts alide is formed. In this process the		(a) Most of its reac	tions are exothermic
	oxidation state of nitrogen			(b) It forms only or	ne oxo acid
	(a) -3 to $+3$	(b) -3 to 0		(c) Highest electron	negativity
	(c) -3 to $+5$	(d) 0 to −3		(d) High F–F bond	dissociation enthalpy
20	. Which of the following halo		29.	. Which of the follow following	ving is most easily hydrolysed amongst the
	(a) CIO ₂	(b) BrO ₂		(a) SF ₆	(b) <i>NF</i> ₃
	(c) I_2O_5	(d) I ₄ O ₉		(c) CCl ₄	(d) TeF ₆
_					and the state of t

- 30. Chlorine cannot be used
 - (a) As bleaching agent
 - (b) In sterilisation
 - (c) In preparation of antiseptic
 - (d) For extraction of silver and copper
- 31. Bleaching powder is obtained by treating chlorine with
 - (a) CaO
- (b) CaCO₃
- (c) CaSO₄
- (d) Ca(OH)₂
- **32.** Amongst LiCl, RbCl, BeCl₂ and MgCl₂. Maximum and minimum ionic character will be shown by the compounds
 - (a) LiCl, MgCl₂
- (b) RbCl, BeCl₂
- (c) RbCl, MgCl₂
- (d) MgCl2, BeCl2
- 33. Which of the following pair has bleaching property
 - (a) O_3 and NO_2
- (b) O_3 and H_2S
- (c) SO_2 and Cl_2
- (d) Cl₂ and NO₂
- 34. Which of the following is in the increasing order of the ionic character
 - (a) $PbCl_4 < PbCl_2 < CaCl_2 < NaCl$
 - (b) $PbCl_2 < PbCl_4 < CaCl_2 < NaCl$
 - (c) PbCl₂ < PbCl₄ < NaCl < CaCl₂
 - (d) $PbCl_4 < PbCl_2 < NaCl < CaCl_2$
- **35.** SO_2 acts as temporary bleaching agent but Cl_2 acts as permanent bleaching agent. Why
 - (a) Cl_2 bleaches due to reduction but SO_2 due to oxidation
 - (b) Cl₂ bleaches due to oxidation but SO₂ due to reduction
 - (c) Both of these
 - (d) None of these
- 36. Which of the following is isolated in pure form
 - (a) HClO₄
- (b) HCIO₃
- (c) HCIO₂
- (d) HClO
- **37.** When cold *NaOH* reacts with Cl_2 which of the following is formed
 - (a) NaClO
- (b) NaClO₂
- (c) NaClO₃
- (d) None of these

- **38.** NaOCl is used as a bleaching agent and sterilising agent. It can be synthesized by the action of
 - (a) NaCl with H2O
 - (b) NH₄Cl with NaOH
 - (c) Cl2 with cold and dilute NaOH
 - (d) Cl₂ with hot and concentrated NaOH
- **39.** On heating $NaCl + K_2Cr_2O_7 + \text{conc.} H_2SO_4$, the gas comes out is
 - (a) O_2

- (b) Cl2
- (c) CrOCl₂
- (d) CrO₂Cl₂
- 40. The mixture of conc. HCl and potassium chlorate on heating gives
 - (a) Cl₂ only
- (b) CIO2 only
- (c) $Cl_2 + ClO_2$
- (d) $Cl_2 + ClO_2 + ClO_3$
- Bleaching powder loses its power on keeping for a long time because
 - (a) It changes into calcium hypochlorate
 - (b) It changes into calcium chloride and calcium hydroxide
 - (c) It absorbs moisture
 - (d) It changes into calcium chloride and calcium chlorate
- **42.** The correct order of increasing hydration energy of the following conjugate bases of oxoacids of chlorine is
 - (a) $CIO^- < CIO_2^- < CIO_3^- < CIO_4^-$
 - (b) $CIO_4^- < CIO_3^- < CIO_2^- < CIO_2^-$
 - (c) $CIO_4^- < CIO_3^- < CIO^- < CIO_2^-$
 - (d) $CIO_3^- < CIO_4^- < CIO_2^- < CIO_2^-$
- 43. The solubility of iodine in water increases in the presence of
 - (a) Alcohol
- (b) Chloroform
- (c) Sodium hydroxide
- (d) Potassium iodide
- **44.** Colour of iodine solution is disappeared by shaking it with aqueous solution of
 - (a) H₂SO₄
- (b) Na₂S
- (c) $Na_2S_2O_3$
- (d) Na₂SO₄
- **45.** In KI solution, I_2 readily dissolves and forms
 - (a) I^-

- (b) KI₂
- (c) KI_2^-
- (d) KI_3

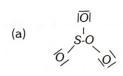
40	 HI cannot be prepared KI because 	by the action of conc. H_2SO_4 on	54	4. The lattice energies of <i>No</i> order	CI, NaF, KCI and RbCI follow th
	(a) HI is stronger than	H ₂ SO₄		(a) KCl < RbCl < NaCl <	< NaF
	(b) HI is more volatile t			(b) NaF < NaCl < KCl <	
				(c) RbCl < KCl < NaCl <	< NaF
	(c) H_2SO_4 is an oxidis			(d) NaCl < RbCl < NaF	< KCl
	(d) H_2SO_4 forms comp		121		
47	7. When iodine reacts with		4.	Noble Gases	
	(a) It gives mixture of F_2	, Cl_2 and Br_2	1.		of only one P block element
	(b) It gives chlorine			exceptional. One molecumany atoms of it	le of that element consists of ho
	(c) It gives bromine			(a) One	(b) Two
	(d) None of these			(c) Three	(d) Four
48		eous KI , the intense yellow species	2.	The noble gas which form	s maximum number of compound
	I_3^- , is formed. The structu	are of I_3^- ions is		is	
	(a) Square pyramidal	(b) Trigonal bipyramidal		(a) Ar	(b) <i>He</i>
	(c) Octahedral	(d) Pentagonal bipyramidal		(c) Xe	(d) Ne
49	. Ozone with dry iodine giv	ve	3.		ses exist more abundantly in natur
	(a) I_4O_9	(b) I_2O_3		than the others	
	(c) IO ₂	(d) I_2O_4		(a) Helium	(b) Neon
50 .	. Iodine is released when p	otassium iodide reacts with		(c) Argon	(d) Krypton
	(a) ZnSO ₄	(b) CuSO ₄	4.		s for advertisement mainly contain
	(c) FeSO ₄	(d) (NH ₄) ₂ SO ₄		(a) Argon	(b) Neon
51	100	sed through an aqueous solution of		(c) Helium	(d) Xenon
J1 .	Account to the control of the contro	orange brown due to the formation	5.	Which one of the followir atmosphere	ng noble gases is not found in th
	(a) KCI	(b) <i>HCl</i>		(a) Rn	(b) <i>Kr</i>
	(c) HBr	(d) Br_2		(c) Ne	(d) Ar
52 .	The pK_a of oxoacids of c	hlorine in water follows the order	6.	The forces acting between	noble gas atoms are
	(a) HClO < HClO ₃ < HC	10 ₂ < HC10 ₄		(a) Vander Waals forces	(b) Ion-dipole forces
				(c) London dispersion for	ces (d) Magnetic forces
	(b) $HCIO_4 < HCIO_3 < HO$		7.	Which inert gas show abno	ormal behaviour on liquefaction
	(c) $HCIO_4 < HCIO_2 < HCIO_3 < HCIO_4 < HCIO_4 < HCIO_3 < HCIO_4 < HCIO_4 < HCIO_5 < HCIO_5$	CIO ₃ < HCIO		(a) Xe	(b) <i>He</i>
	(d) $HCIO_2 < HCIO < HC$	$IO_3 < HCIO_4$		(c) Ar	(d) <i>Kr</i>
53 .	Chlorine has two natura	lly occurring isotopes, 35Cl and	8.	Helium is used in balloons	in place of hydrogen because it is
		of C1 is 35.45, the ratio of natural		(a) Radioactive	
	abundance of ³⁵ Cl and ³	¹⁷ CI is closest to		(b) More abundant than h	ydrogen
	(a) 3.5:1	(b) 3:1		(c) Incombustible	
	(c) 2.5:1	(d) 4:1		(d) Lighter than hydrogen	
_			The n I		gen, Halogen and Noble Family) 52

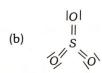
9.	Molecules of a noble gas because a noble gas	do not possess vibrational energy	17.	Wh	nich of the following	fluorides of Xeno	n is impossibl	le
	(a) Is monoatomic			(a)	XeF_6	(b) <i>XeF</i> ₄		
	(b) Is chemically inert			(c)	XeF_3	(d) XeF ₂		
	(c) Has completely filled s	shells	18.	The	e numbers of lone p	air(s) on Xe in 1	XeF_o and Xe	F. are
	(d) Is diamagnetic				pectively		ior y and ric	4 arc,
10	. Helium is added to the oxy because	gen supply used by deep sea divers				(b) 4 and 1		
	(a) It is less soluble in block	od than nitrogen at high pressure		(c)	3 and 2	(d) 4 and 2	in the sage	
	(b) It is lighter than nitrog		5.	IIT	-JEE/ AIEEE			
	(c) It is readily miscible w	ith oxygen						
	(d) It is less poisonous that	n nitrogen	1.		e decreasing values			
11.	Who among the following of noble gas	g first prepared a stable compound		Sb	H_3 (101°) down gro	oup-15 of the peri	odic table is	(2006)
	(a) Rutherford	(b) Rayleigh		(a)	Increasing bp-bp re	pulsion		
	(c) Ramsay	(d) Neil Bartlett		(b)	Increasing p-orbital	character in sp ³		
12.	From the knowledge of th	e position of radium in the periodic			Decreasing <i>lp</i> -bp re			
	table, which of the follow be false	ing statements would you expect to			Decreasing electron			
	(a) RaSO ₄ is insoluble in	n water	2.	In v	which of the followi	ng arrangements	-	e is not
	(b) $RaSO_4$ is insoluble in	n HNO ₃			$CO_2 < SiO_2 < SnO$		_	
	(c) RaSO ₄ is a white sol	id						g power
	(d) RaSO ₄ is a colourles	s liquid			HF < HCl < HBr < $NH_3 < PH_3 < AsH$			rength
13.		not obtained by direct reaction of		(d)	B < C < O < N: in	ncreasing first ioni	zation enthal	ру
	constituent elements		3.		ich of the following			[2011]
	(a) XeF ₂	(b) <i>XeF</i> ₄			The stability of hyd			BiH_3 in
	(c) XeO ₃	(d) <i>XeF</i> ₆			group 15 of the per		Comban	
14.	XeF ₄ on partial hydrolys	is produces		(b)	Nitrogen cannot for	m $d\pi - p\pi$ bond	Limbo en r	
	(a) XeF ₂	(b) XeOF ₂		(c)	Single $N-N$ bond	d is weaker than th	ne single P -	P bond
	(c) XeOF ₄	(d) XeO ₃		(d)	N_2O_4 has two reso	onance structure		
15.	XeF ₆ on hydrolysis gives	2 9 1 E	4.		compounds of type			Bi, the
		(b) XeO			gles $CI - E - CI$ for			[1999]
	(a) XeO ₃				B > P = As = Bi			
	(c) XeO ₂	(d) Xe			B < P = As = Bi			
16.	In the preparation of com O_2^+ Pt F_6^- as a base comp	pounds of Xe, Bartlett had taken	5.		gular use of which o dity of soil	of the following f	ertilizer increa	ases the [2007]
				(a)	Potassium nitrate	(b) Urea		
	(a) Both O2 and Xe have			(c)	Superphosphate of	lime (d) Ammo	nium sulphate	2
	(b) Both O_2 and Xe have	e same electron gain enthalpy	6.	Wh	nich oxide of nitroge	n is coloured gas		[1987]
	(c) Both O2 and Xe have	e almost same ionisation enthalpy		(a)	N_2O	(b) <i>NO</i>		
	(d) Both Xe and O2 are			(c)	N_2O_5	(d) NO ₂		

7.	What would happen when a solution of potassium		15		ne reaction of zinc wit spectively, produces	h dilute	and concentrated n	itric acid, [2016]
	is treated with an excess of dilute nitric acid	[2003]			NO_2 and NO	(b	NO and N2O	
	(a) Cr^{3+} and $Cr_2O_7^{2-}$ are formed						N_2O and NO_2	
	(b) $Cr_2O_7^{2-}$ and H_2O are formed				NO_2 and N_2O		_	of only
	(c) CrO_4^{2-} is reduced to +3 state of Cr		16	. Ni	trogen is liberated by	the then	nai decomposition	[1 99 1]
	(d) CrO_4^{2-} is oxidized to +7 state of Cr			(a)	NH_4NO_2	(b)	NaN ₃	
8.	Nitrogen dioxide is not produced on heating	[1995]		(c)	$(NH_4)_2Cr_2O_7$	(d)) All the three	
	(a) KNO_3 (b) $Pb(NO_3)_2$		17	. Ex	tra pure N_2 can be c	btained	by heating	[2011]
	(c) Cu(NO ₃) ₂ (d) AgNO ₃				NH ₃ with CuO		NH_4NO_3	
9.	Which of the following is the most suitable drying	,			$(NH_4)_2 Cr_2 O_7$		$Ba(N_3)_2$	
	ammonia gas	[2000]	18	. The	e percentage of p-cl	naracter	in the orbitals forr	ning P-P
	(a) Calcium oxide				nds in P_4 is			[2007]
	(b) Anhydrous calcium chloride			(a)	25	(b)	33	
	(c) Phosphorus pentoxide			(c)	50	(d)	75	
	(d) Conc. sulphuric acid		19		e number of hydroge			
10.	Ammonium dichromate on heating gives	[1999]			m in hypophosphoro			[2005]
	(a) Chromium oxide and ammonia			3/20/20	Zero		Two	
	(b) Chromic acid and nitrogen				One	1.0	Three	
	(c) Chromium oxide and nitrogen		20.		nich is the most thermo Dosphorus	odynami	cally stable allotrop	ic form of [2005]
	(d) Chromic acid and ammonia			5235 - 65	Red	(b)	White	[2000]
11.	Which nitrogen trihalides is least basic	[1987]			Black		Yellow	
	(a) NF_3 (b) NCl_3		91		e reaction of P_4 with			The Y is
	(c) NBr_3 (d) NI_3		21.	. 1116	reaction of F ₄ with	A leads	selectively to F_4O_6 .	[2009]
12.	The cyanide ion, CN^- and N_2 are isoelectronic	. But in		(a)	Dry O ₂			
(contrast to CN^- , N_2 is chemically inert because of	[1992]		(b)	A mixture of O_2 and	N_2		
((a) Low bond energy			(c)	Moist O ₂			
	b) Absence of bond polarity			(d)	O_2 in the presence of	of aquec	ous NaOH	
	c) Unsymmetrical electron distribution		22.		at may be expected			na aas is
	d) Presence of more number of electrons in bonding				sed with chlorine gas	to nap	pen when phospin	[2003]
	Which blue liquid is obtained on reacting equimolar a		,	(a)	The mixture only coo	ols dowr	1	
	of two gases at $-30^{\circ}C$	[2005]		(b)	PCI ₃ and HCI are for	ormed a	nd the mixture war	ns up
(a) N_2O (b) N_2O_3			(c)	PCl_5 and HCl are for	ormed a	nd the mixture cool	s down
(c) N_2O_4 (d) N_2O_5				$PH_3.Cl_2$ is formed			
14. ($(NH_4)_2Cr_2O_7$ on heating liberates a gas. The same	gas will	00					
ь	ne obtained by	[2004]	23.	One	e mole of calcium pho	sphide	on reaction with exc	ess water [1999]
(a) Heating NH_4NO_2				One mole of phosph	in <i>e</i>		[1777]
(b) Heating NH ₄ NO ₃				Two moles of phospi		d	
(c) Treating H_2O_2 with $NaNO_2$				Two moles of phospi			
	d) Treating Mg_3N_2 with H_2O						ntovido	
(a,amig 1-193112 with 1720			(ω)	One mole of phosph	orous pe	HOXIGE	

24	. The pair in which phosphorous atoms have a formal c state of +3 is	exidation [2016]	32.	. Among	KO ₂ , NO ₂ , BaO	$_2$ and NO_2^+ unpaire	ed electron is		
	(a) Pyrophosphorous and hypophosphoric acids	-		present i	n		[1997]		
	(b) Orthophosphorous and hypophosphoric acids			(a) NO2	and BaO_2	(b) KO_2 and BaO	2		
	(c) Pyrophosphorous and pyrophosphoric acids			(c) KO ₂	only	(d) BaO_2 only			
	(d) Orthophosphorous and pyrophosphorous acids		33.	. There is	no $S-S$ bond in		[1991]		
25.	The number of $P-O-P$ bonds in cyclic metaph acid is	osphoric [2000]		(a) S_2O_2	a feet at	(b) $S_2O_5^{2-}$	[1771]		
	(a) Zero (b) Two			(c) S_2O_2	2-	(d) $S_2O_7^{2-}$			
	(c) Three (d) Four		3/1	1111	used in photograph		[1981]		
26.	The compound that does not produce nitrogen gathermal decomposition is	s by the [2018]	34.		icing behaviour	ly decause of its	[1981]		
	(a) NH_4NO_2 (b) $(NH_4)_2SO_4$			(b) Oxid	ising behaviour				
	(c) $Ba(N_3)_2$ (d) $(NH_4)_2Cr_2O_7$			(c) Com	plex forming behav	viour			
07	4.2 2 1			(d) Reac	tion with light				
21.	The smog is essentially caused by the presence of	[2004]	35.	. Which	of the following s	statements regarding	g sulphur is		
	(a) Oxides of sulphur and nitrogen			incorrect			[2011]		
	(b) O_2 and N_2			(a) S_2 r	nolecule is parama	gnetic			
	(c) O_2 and O_3			(b) The	vapour at 200°C	consists mostly of S_8	rings		
	(d) O_3 and N_2			(c) At 6	$00^{\circ}C$ the gas main	nly consists of S_2 mo	placulas		
28.	Which compound acts as an oxidising as well as agent	reducing [1991]		(d) The		ulphur is never less t			
	(a) SO_2 (b) MnO_2 .		36		having $O - O$ box	nd is	[2004]		
	(c) Al_2O_3 (d) CrO_3		00.				[2004]		
29.	Amongst H_2O , H_2S , H_2Se and H_2Te the one			(a) H_2S		(b) $H_2S_2O_6$			
	highest boiling point is	[2000]		(c) H_2S	C_2O_8	(d) $H_2S_4O_6$			
	(a) H_2O because of hydrogen bonding		37. The number of $S-S$ bonds in sulphur trioxide trimer S_3O_3						
	(b) $H_2 Te$ because of higher molecular weight			is			[2001]		
	(c) H_2S because of hydrogen bonding	6		(a) Thre	e	(b) Two			
	(d) H ₂ Se because of lower molecular weight			(c) One		(d) Zero			
30.	Which of the following is the wrong statement	[2013]	38	. The con (<i>H</i> X) i		ermal stability of hyd	rogen halides [2005]		
	(a) ONCI and ONO are isoelectronic			(a) HI	> HBr > HCl > HF	(b) HF > HCl > F	lBr > HI		
	(b) O_3 molecule is bent			(c) HC	! < HF < HBr < HI	(a) HI > HCl < H	F < HBr		
	(c) Ozone is violet-black in solid state		 (c) HCl < HF < HBr < HI (d) HI > HCl < HF < HBr 39. The following acids have been arranged in the order or 						
	(d) Ozone is diamagnetic gas		37		-	lentify the correct ord			
31.	The compound which gives off oxygen on moderate	heating		(I) CIOI	H (II) BrOH (III)	IOH	[1996]		
	is	[1986]		(a) I >		(b) $II > I > III$			
	(a) Cupric oxide (b) Mercuric oxide			(c) III >		(d) $I > III > II$			
	(c) Zinc oxide (d) Aluminium oxide	t-c-		(C) 111 >		(u)			

40.	Which of the following sta	tements is true	[2006]	47 . Ide	ntify the incorrect stater	ment among the followin	g [2007]		
	(a) H_3PO_3 is a stronger a	cid than H_2SO_3		(a) Ozone reacts with SO_2 to give SO_3 (b) Silicon reacts with $NaOH_{\rm (aq)}$ in the presence of air to give					
	(b) In aqueous medium H	F is a stronger acid than F	łCl						
	(c) HClO ₄ is a weaker ac	tid than HClO ₃			Na_2SiO_3 and H_2O				
	(d) HNO ₃ is a stronger a	cid than HNO2		(c)	Cl ₂ reacts with excess	of NH_3 to give N_2 an	d HCI		
41.	Which among the following	ng is the most reactive	[2015]	(d)	Br_2 reacts with hot an $NaBr$, $NaBrO_4$ and Ha	nd strong <i>NaOH</i> soluti 1 ₂ O	on to give		
	(a) Cl ₂	(b) Br ₂		48 . Cor	ncentrated H_2SO_4 can	not be used to prepare	HBr from		
	(c) I ₂	(d) ICI			Br , because it		[1995]		
42.	HBr and HI reduce	sulphuric acid, HCI car	n reduce	(a)	Reduces HBr	(b) Oxidises HBr			
	KMnO ₄ and HF can red	luce	[1981]	(c)	Disproportionates HBr	(d) Reacts slowly with	NaBr		
	(a) H_2SO_4	(b) KMnO ₄		49. Con	ncentrated HNO3 react	s with I_2 to give	[1989]		
	(c) K ₂ Cr ₂ O ₇	(d) None of these		(a)	Н	(b) HOI			
43.	Chlorine acts as a bleachi	ng agent only in presence	of [1983]	(c)	HOIO ₂	(d) <i>HOIO</i> ₃			
	(a) Dry air	(b) Moisture				des is least stable and ha			
	(c) Sunlight	(d) Pure oxygen			tence	(h) Cal	[1996]		
44.	A metal, M forms chloride			(a)	Par en en en en	(b) Gel ₄			
	Which of the following s	statements about these ch	[2006]		SnI ₄	(d) <i>PbI</i> ₄			
	(a) MCl ₂ is more volatile	e than MCl4			products obtained whe te aqueous NaOH are	n chlorine gas reacts with	n cold and [2017]		
	(b) MCl ₂ is more soluble	e in anhydrous ethanol tha	ın MCl ₄		CIO_2^- and CIO_3^-	(b) Cl^- and ClO^-			
	(c) MCl ₂ is more ionic t	han MCI ₄		(c)	Cl^- and ClO_2^-	(d) CIO^- and CIO_3^-			
	(d) MCl ₂ is more easily	hydrolysed than MCI ₄		52 . Argo	on is used in arc welding		[2007]		
45.	What products are exp	ected from the dispropo	rtionation		Low reactivity with met		-		
	reaction of hypochlorous	acid	[2006]	(b)	Ability to lower the mel	ting point of metal			
	(a) $HCIO_3$ and Cl_2O	(b) HClO ₂ and HClO	O_4	(c)	Flammability				
	(c) HCl and Cl ₂ O	(d) HCI and $HCIO_3$		(d)	High calorific value				
46.		ric acid when kept in oud of white fumes. The ex	planation		ich one of the followin	g statements regarding	helium is [2004]		
	for it is that (a) Concentrated hydrod HCl gas all the time	chloric acid emits strongly	[2003] smelling		It is used to pro superconducting magne	ets	powerful		
		with the emitted HCl gas	to form a		at low temperatures	agent for carrying out exp			
	(c) Strong affinity of He	CI gas for moisture in air		(c) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflammable					
	forming of droplets o cloudy smoke	f liquid solution which app	ears like a	(d)	It is used in gas-cooled	nuclear reactors			
	(d) Due to strong affinity	for water, concentrated hy		54 . Whi	ich inert gas have highe	st boiling point	[2015]		
	acid pulls moisture of droplets of water and	air towards itself. This mois	ture forms	(a)		(b) Ar			
_		nonce the dodd		(c)	Kr	(d) He			


55	XeF_4 and XeF_6 are expense.	cted to be	[2007]	5.	Which of the following oxid-	e of nitrogen is the anh	ydride of
	(a) Oxidizing	(b) Reducing			HNO_3	[1989	9, 91, 99]
	(c) Unreactive	(d) Strongly basic			(a) NO	(b) N ₂ O ₃	
56	. In XeF_2 , XeF_4 , XeF_6 the	number of lone pairs	on Xe is		(c) N_3O_4	(d) N_2O_5	
	respectively	41.070	[2002]	6.	Concentrated nitric acid oxid	dises cane sugar to	[1991]
	(a) 2, 3, 1	(b) 1, 2, 3			(a) CO_2 and H_2O	(b) CO and H_2O	
	(c) 4, 1, 2	(d) 3, 2, 1			(c) CO , CO_2 and H_2O	(d) Oxalic acid and wa	ator
5/	. Total number of lone pair of		[2004]	7			
	(a) 0	(b) 1		7.	The product obtained as a real CaC_2 is	sult of a reaction of nitr	ogen with [2016]
-0	(c) 2	(d) 3			(a) CaCN ₂	(b) CaCN	
58.	The shape of XeO_2F_2 mole	ecule is	[2012]				
	(a) Trigonal bipyramidal	(b) Square planar			(c) CaCN ₃	(d) Ca ₂ CN	
	(c) Tetrahedral	(d) See-saw		8.	Pure N_2 gas is obtained fro	m	[1991]
59.	Which one of the following not feasible	reactions of Xenon com			(a) $NH_3 + NaNO_2$	(b) $NH_4Cl + NaNO_2$	
	(a) $XeO_3 + 6HF \rightarrow XeF_6 +$	+3H ∩	[2009]		(c) $N_2O + Cu$	(d) $(NH_4)_2 Cr_2 O_7$	
		-	. *	9.	Strong reducing behaviour of	of H_3PO_2 is due to	[2015]
	(b) $3XeF_4 + 6H_2O \rightarrow 2Xe$				(a) Presence of one -OH of		
	(c) $2XeF_2 + 2H_2O \rightarrow 2Xe$	$+4HF+O_2$			(b) High electron gain entha		oonas
	(d) $XeF_6 + RbF \rightarrow Rb[XeB]$	F ₇]			(c) High oxidation state of p		
2	NEET/ AIDMT/ CDC	DMT	Series Constant		(d) Presence of two -OH of		bond
0.	NEET/ AIPMT/ CBSE			10.	Each of the following is tru		
۱.	The basic character of hy	ydrides of the V-group			except that they		[1989]
	decreases in the order		[1996]		(a) Are both soluble in CS ₂		
	(a) $SbH_3 > PH_3 > AsH_3 >$	The part of the control of the contr			(b) Can be oxidised by hea		
	(b) $NH_3 > SbH_3 > PH_3 >$	AsH ₃			(c) Consists of same kind o		
	(c) $NH_3 > PH_3 > AsH_3 > 0$	SbH_3		11.	(d) Can be converted into a		
	(d) $SbH_3 > AsH_3 > PH_3 >$	NH_3			P_2O_5 is heated with water		[1991]
2.	Which of the following is the	e most basic oxide	[2006]		(a) Hypophosphorus acid	(b) Orthophosphorus	
	(a) Bi_2O_3	(b) SeO ₂		19	(c) Hypophosphoric acid	(d) Orthophosphoric	
	(c) Al_2O_3	(d) Sb_2O_3		12	. PCl_3 reacts with water to f	orm	[1991]
2			(1000)		(a) <i>PH</i> ₃	(b) H_3PO_3 , HCI	
•.	Which of the following is no		[1989]		(c) POCI ₃	(d) H_3PO_4	
	(a) NCI ₅	(b) <i>NI</i> ₃		13	. Red phosphorus is less r	eactive than yellow p	hosphorus
	(c) SbCl ₃	(d) NCl ₃			because		[1999]
4.	Which of the following oxide	e is least acidic	[1996]		(a) Its colour is red(b) It is highly polymerised		
	(a) P_4O_6	(b) P_4O_{10}			(c) It is highly polymerised		
	(c) As ₄ O ₆	(d) As_4O_{19}			(d) It is insoluble in C_2H_5	ОН	
					2 3		


14.	PH_4	I + NaOH forms		[1991]		B.	Steel	(ii)	Bessemer's Process			
	(a) P	PH_3	(b) <i>NI</i>	\mathcal{H}_3		C.	Sodium hydroxide	(iii)	Leblanc Process			
	(c) P	P_4O_6	(d) P_4	O_{10}		D.	Ammonia	(iv)	Contact Process			
15.	phosp (a) O	ohorus		not valid for oxoacids of [2012] the manufacture of triple	160	(c) A	(i), B(iv), C(ii), D(iii) (iv), B(iii), C(ii), D(i)	(d) A(i	[2010]), B(ii), C(iii), D(iv) v), B(ii), C(iii), D(i)			
	(b) H	ypophosphorous acid	d is a dipr	otic acid	21.			s nas tn (b) Te	e highest energy [1996]			
		ll oxoacids contair nosphorus	n tetrahe	edral four coordinated		(c) S		(d) O	-0			
		ll oxoacids contain atl oup	least one	P=O unit and one P-OH	22.	It is p		n from a	ir by fractional distillation [1989]			
16.	How	many bridging oxyge	n atoms a	are present in P_4O_{10}		S 13	xygen is in a different trogen	group o	of the periodic table from			
	(a) 6 (c) 2		(b) 4 (d) 5	[2010]		(b) O (c) O	xygen is more reactive xygen has higher b.p. t	han nit	rogen			
		n is the correct statem		e given acids [2016]			xygen has a lower den	sity than				
	(a) Pł			l while phosphonic acid is	23.	Oxyg (a) F	en does not react with	(b) No	[1989]			
	(b) Pł		nonoproti	c acid while phosphonic		(c) S	S	(d) C				
		oth are triprotic acids			24.	Mark	the oxide which is amp					
		oth are diprotic acids		g, and say a say to the		(a) (CO_2	(b) Si	O_2			
18.	When	orthophosphoric aci	d is heate	ed to $600^{\circ}C$, the product		(c) S	SnO_2	(d) C	aO			
	forme (a) Pl	d is nosphine, <i>PH</i> ₃		[1989]	25.	comr		is sh	he have some properties in sown by one of these [2015]			
	(b) Pł	nosphorus pentoxide	$P_{2}O_{5}$			(a) Is	a reducing agent					
-	(c) Ph	nosphorus acid, H_3P	O_3			(b) Is	soluble in water					
100	(d) Me	etaphosphoric acid,	HPO_3			(c) Is	used as a food-preser	vative				
				mon pollutant introduced		(d) F	orm 'acid-rain'					
i 9.	nto th	ne atmosphere both o	due to na	tural and human activity [2018]	26.		gases respectively abso nnamon is	rbed by	alkaline pyrogallol and oil [1989]			
	(a) N	$_{2}O_{5}$	(b) NO	O_2		(a) (O _{3,} CH ₄	(b) C	O_2, O_3			
	(c) N	₂ O	(d) NO)		(c) 3	SO ₂ , CH ₄	(d) N	I_2O , O_3			
				II (process) employed in s and select the correct	27. Which would quickly absorb oxygen [1992]							
	option			No. of the Control of	(a) Alkaline solution of pyrogallol							
		List I	A series	List II		(b) (Conc. H ₂ SO ₄					
	P L	Substances	la vo.	Processes		(c) I	Lime water					
	A.	Sulphuric acid	(i)	Haber's Process		(d) A	Alkaline solution of Cu	SO_4				

- 28. Copper turnings when heated with concentrated sulphuric acid will give
 - (a) SO_2
- (b) SO₃
- (c) H₂S
- (d) O_2
- 29. Oleum is

[1991]

- (a) Castor oil
- (b) Oil of vitriol
- (c) Fuming H2SO4
- (d) None of them
- **30.** In the preparation of sulphuric acid, $V_2 O_5$ is used in the reaction, which is [PMT 2001]
 - (a) $S + O_2 \rightarrow SO_2$
- (b) $2SO_2 + O_2 \rightarrow 2SO_3$
- (c) $SO_2 + H_2O \rightarrow H_2SO_3$ (d) $N_2 + 3H_2 \rightarrow 2NH_3$
- 31. Roasting of sulphides gives the gas X as a by product. This is colourless gas with choking smell of burnt sulphur and causes great damage to respiratory organs as a result of acid rain. If aqueous solution is acidic, acts as reducing agent and its acid has never been isolated. The gas X is
 - (a) SO_3
- (b) H₂S
- (c) SO₂
- (d) CO2
- 32. Which of the following structures is the most preferred and hence of lowest energy for SO₃ [2011]

(c)

- (d)
- 33. In which pair of ions both the species contain S-S bond

[2017]

- (a) $S_2O_7^{2-}, S_2O_3^{2-}$ (b) $S_4O_6^{2-}, S_2O_3^{2-}$
- (c) $S_2O_7^{2-}, S_2O_8^{2-}$
- (d) $S_4O_6^{2-}, S_2O_7^{2-}$
- 34. Which of the following will not occur

[2002]

- (a) $Fe + H_2SO_4 \rightarrow FeSO_4 + H_2$
- (b) $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$
- (c) $2KBr + I_2 \rightarrow 2KI + Br_2$
- (d) $CuO + H_2 \rightarrow Cu + H_2O$

- 35. Which of the following statements is not true
- [2003]
- (a) HF is a stronger acid than HCl
- (b) Among halide ions, iodide is the most powerful reducing
- (c) Fluorine is the only halogen that does not show a variable oxidation state
- (d) HOCl is a stronger acid than HOBr
- 36. Which one of the following orders is not in accordance with [2006, 08] the properly stated against it
 - (a) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity
 - (b) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy
 - (c) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power
 - (d) HI > HBr > HCl > HF : Acidic property in water
- 37. Which one of the following oxides is expected to exhibit [2005] paramagnetic behaviour
 - (a) CO₂
- (b) SO₂
- (c) CIO₂
- (d) SiO₂
- 38. Which one of the following orders is correct for the bond [2016] dissociation enthalpy of halogen molecules
 - (a) $I_2 > Br_2 > Cl_2 > F_2$
- (b) $Cl_2 > Br_2 > F_2 > I_2$
- (c) $Br_2 > I_2 > F_2 > Cl_2$
- (d) $F_2 > Cl_2 > Br_2 > I_2$
- 39. Which of the statements given below is incorrect (a) Cl_2O_7 is an anhydride of perchloric acid
 - [2015]
 - (b) O_3 molecule is bent

 - (d) OF_2 is an oxide of fluorine

(c) ONF is isoelectronic with O_2N^{-1}

- **40.** The variation of the boiling point of the hydrogen halides is in the order HF > HI > HBr > HCl. What explains the higher boiling point of hydrogen fluoride
 - (a) The electronegativity of fluorine is much higher than for other elements in the group
 - (b) There is strong hydrogen bonding between HF molecules
 - (c) The bond energy of HF molecules is greater than in other hydrogen halides
 - (d) The effect of nuclear shielding is much reduced in fluorine which polarizes the HF molecule
- 41. Which of the following is used in the preparation of chlorine [1999]
 - (a) Only MnO2
 - (b) Only KMnO₄
 - (c) Both MnO2 and KMnO4
 - (d) Either MnO2 or KMnO4

42 .	Which one of the following is in bleaching powder for bleaching	s present as an activ ching action	e ingredient [2011]	50.	Which of the following star	emens s not due tot ma	[2018]		
	(a) CaCl ₂	(b) CaOCl ₂			(a) All form monobasic ox	ayacids			
	(c) Ca(OCI) ₂	(d) CaO ₂ Cl			(b) All are oxidizing agent	s			
43.	Bromine is liberated when an bromide is treated with	n aqueous solution c	of potassium [1989]		(c) All but fluorine show p(d) Chlorine has the higher		y		
	(a) Cl ₂	(b) I ₂		-	AUMS				
	(c) Dilute H_2SO_4	(d) SO ₂		1.	AIIMS				
14	In the manufacture of brom		the mother	1.	Which is the most explosiv	<i>je</i>	[1996]		
	liquor containing bromides is		[1992]		(a) NCl ₃	(b) PCl ₃			
	(a) CO ₂	(b) Cl ₂			(c) AsCl ₃	(d) All of these			
	(c) I ₂	(d) SO ₂		2.	Which of the following ox nitrous acid	ides of nitrogen is the an	hydride of [1991]		
15.	A one litre flask is full of brown of brown colour of vapour v	-			(a) NO	(b) N_2O_3			
	adding to the flask some	- /	[1998]		(c) N_2O_4	(d) N_2O_5			
	(a) Pieces of marble	(b) Carbon disulph	ide	3.	Which one has the highes	t percentage of nitrogen	[1996]		
	(c) Carbon tetrachloride	(d) Animal charcoa	l powder		(a) Urea	(b) Ammonium sulph	ate		
	When thiosulphate ion is oxi	dised by iodine, whic			(c) Ammonium nitrate	(d) Calcium nitrate			
	following ion is produced		[1996]	4.	The element which forms	oxides in all oxidation st	ates +1 to		
	(a) SO_3^{2-}	(b) SO_4^{2-1}			+5 is		[2004]		
	(c) $S_4O_6^{2-}$	(d) $S_2O_6^{2-}$			(a) N	(b) <i>P</i>			
17	Which of the following pair	rs of compounds is	isoelectronic		(c) As	(d) <i>Sb</i>			
17.	and isostructural	s or compounds is	[2017]		Which of the following co		on [2015]		
	(a) BeCl ₂ , XeF ₂	(b) TeI_2 , XeF_2			(a) NH ₄ Cl	(b) <i>CaCO</i> ₃			
		(d) IF ₃ , XeF ₂			(c) BaSO ₄	(d) CaHPO ₃			
18.	(c) IBr_2^-, XeF_2 $HgCl_2$ and I_2 both when I_2		ontaining I^-	6.	. In the catalytic oxidation of ammonia an oxide is for which is used in the preparation of HNO_3 . This oxide is				
	ions the pair of species forme		[2017]				[1996		
	(a) HgI_2, I_3^-	(b) HgI_2, I^-			(a) N_2O_5	(b) N_2O_4			
	(c) HgI_4^{2-}, I_3^-	(d) Hg_2I_2, I^-			(c) NO ₂	(d) NO			
19	Consider the change in	oxidation state	of bromine	7.	The chemical formula of	'tear gas' is	[2008		
	corresponding to different				(a) COCl ₂	(b) CO ₂			
	diagram below				(c) Cl ₂	(d) CCl ₃ NO ₂			
	$BrO_4^- \xrightarrow{1.82 V} BrO_3^- \xrightarrow{1.}$	⁵ V → HBrO		8.	The statement true for N		[2004		
	$Br^{-} \leftarrow {1.0652V} Br_{2} \leftarrow {1}$	595 V			(a) It has a non-linear structure				
	Then the species undergoing		is [2018]		(b) It is called pseudohal				
	(a) BrO ₃	(b) <i>BrO</i> ₄			(c) The formal oxidation		nion is -1		

(c) Br₂

(d) HBrO

(d) It is isoelectronic with NO2

9. The ONO angle is maximum in [2004] (a) NO_3^- (b) NO_2^-	17. Which of the following is not suitable for use in a desiccator to dry substances
2	
2	
10. The structural formula of hypophosphorus acid is	(c) $CaCl_2$ (d) P_4O_{10}
O [2001]	18. Peroxydisulphuric acid has the following bond [2008]
(a) $H \stackrel{O}{\stackrel{ }{{}{{}{}{}{\stackrel$	(a) $O \longleftarrow O = O$ (b) $\longleftarrow O = O \longrightarrow$
H OH OH	(c) $> O \longrightarrow O <$ (d) $-O - O -$
$(c) \begin{array}{c} O \\ \uparrow \\ HO \end{array} \begin{array}{c} O \\ \uparrow \\ OH \end{array} $	19. Which one is highest melting halide [1980, 82]
(c) $HO \stackrel{\uparrow}{\longrightarrow} OH$ $OH \stackrel{(d)}{\longrightarrow} OH$ $OH \stackrel{ }{\longrightarrow} OOH$	(a) NaCl (b) NaBr
OH	(c) NaF (d) NaI
11. Which of the following compound is tribasic acid	20. Metal halide which is insoluble in water is [1996]
[2002]	(a) AgI (b) KBr
(a) H_3PO_2 (b) H_3PO_3	(c) $CaCl_2$ (d) AgF
(c) H_3PO_4 (d) $H_4P_2O_7$	21. Which of the following halogen does not exhibit positive
12. The compound molecular in nature in gas phase but ionic in solid state is	oxidation state in its compounds [1981, 2000
(a) DOI	(a) CI (b) Br
(a) PCI ₃ (b) CCI ₄ (c) PCI ₃ (d) POCI ₃	(c) I (d) F
13. The number of $P-O-P$ bridges in the structure of	22. Which is the most volatile compound [1980
phosphorous pentoxide and phosphorous trioxide are	(a) HF (b) HCl
respectively [2005]	(c) HBr (d) HI
(a) 6, 6 (b) 5, 5	23. Which one is the anhydride of $HCIO_4$ [1983]
(c) 5, 6 (d) 6, 5	(a) Cl_2O (b) CIO_2
14. The incorrect statement among the following is [2006]	(c) Cl_2O_6 (d) Cl_2O_7
(a) C ₆₀ is an allotropic form of carbon	24. The mixture of concentrated HCI and HNO_3 made in $3:1$
(b) O ₃ is an allotropic form of oxygen	ratio contains [2003]
(c) S ₈ is only allotropic form of sulphur (d) Red phosphorus is more sable in air than white	(a) CIO_2 (b) $NOCI$
(d) Red phosphorus is more sable in air than white phosphorus	(c) NCl_3 (d) N_2O_4
15. Identify the incorrect statement with respect to ozone [1992]	25. Bromine water reacts with SO_2 to form [2015]
(a) Ozone is formed in the upper atmosphere by a	(a) H_2O and HBr (b) H_2SO_4 and HBr
photochemical reaction involving dioxygen	(c) HBr and S (d) S and H_2O
(b) Ozone is more reactive than oxygen (c) Ozone is diamognetic whereas diamognetic	26. Which two of the following salts are used for preparing iodized
(c) Ozone is diamagnetic whereas dioxygen is paramagnetic	salt
(d) Ozone protects the earth's inhabitants by absorbing γ radiations	(i) KIO ₃ (ii) KI
16. Shape of O_2F_2 is similar to that of [2004, 15]	(iii) I_2 (iv) HI
(a) 0 =	[2006]
(a) 11 -	(a) (i) and (ii) (b) (i) and (iii)
$\begin{array}{ccc} \text{(c)} & H_2F_2 & \text{(d)} & C_2H_2 \\ \end{array}$	(c) (ii) and (iv) (d) (iii) and (iv)

[2006] 27. Tincture of iodine is Liquid NH₃ quickly vaporises. Reason (a) Aqueous solution of I_2 [AIIMS 1995] (b) Solution of I_2 in aqueous KI H_3PO_3 is a dibasic acid. (c) Alcoholic solution of I2 Assertion There are two H atoms directly attached (d) Aqueous solution of KI Reason [AIIMS 2007] **28.** CI_2 reacts with CS_2 in presence of I_2 catalyst to form Covalency of oxygen is three. Assertion [2015] Dinegative anion of oxygen (O2-) is quite Reason (b) CCI₄ (a) CHCl₃ common but dinegative anion of sulphur (d) C_2H_6 (S^{2-}) is less common. (c) C_2H_5Cl [AIIMS 2001] Reaction of SO_2 and H_2S in the 29. Which one of the following noble gases is the least polarizable Assertion presence of Fe_2O_3 catalyst gives elemental sulphur. (a) Xe (b) Ar SO_2 is a reducing agent. [AIIMS 2005] (d) He (c) Ne Reason **30.** The correct order of solubility in water for He, Ne, Ar, Kr, Xe, SeCl4, does not have a tetrahedral Assertion [2002] structure. (a) He > Ne > Ar > Kr > XeSe in SeCl₄ has two lone pairs. Reason (b) Ne > Ar > Kr > He > Xe[AIIMS 2005] Ozone is a powerful oxidizing agent in (c) Xe > Kr > Ar > Ne > HeAssertion comparison to O_2 . (d) Ar > Ne > He > Kr > Xe Ozone is diamagnetic but O_2 is Reason 31. When electric discharge is passed through neon at low [AIIMS 2005] paramagnetic. [2007] pressure, the colour of the glow is Sulphur (IV) oxide can act as reducing as Assertion (b) Green (a) Red well as oxidising agent. (d) Orange (c) Yellow Reason S in SO_2 has its oxidation no. +4 Among the following molecule lying between-2 (minimum) and +6 (i) XeO_3 (ii) $XeOF_4$ (iii) XeF_6 [AIIMS 2015] (maximum). At room temperature, oxygen exists as a Assertion Those having same number of lone pairs on Xe are diatomic gas, whereas sulphur exists as solid. [2005, 15] The catenated -O-O-O- chains are Reason (b) (i) and (iii) only (a) (i) and (ii) only less stable as compared to O = O[AIIMS 2001] molecule. (d) (i),(ii) and (iii) (c) (ii) and (iii) only Molecular nitrogen is less reactive than Assertion **Assertion and Reason** molecular oxygen. The bond length of N_2 is shorter than that Reason Read the assertion and reason carefully to mark the correct option [BHU 2006] of oxygen. out of the options given below: N_2H_4 cannot reduce $S_2O_3^{2-}$. 10. Assertion (a) If both assertion and reason are true and the reason is the $S_2O_3^{2-}$ is converted to $S_4O_6^{2-}$. correct explanation of the assertion. Reason [MP PMT 2008] (b) If both assertion and reason are true but reason is not the Sb_2S_3 is not soluble in yellow ammonium correct explanation of the assertion. 11. Assertion sulphide. (c) If assertion is true but reason is false. The common ion effect due to S^{2-} ions Reason

(d) If the assertion and reason both are false.

(e) If assertion is false but reason is true.

Assertion

reduces the solubility of Sb₂S₃.

[AIIMS 2006]

Liquid NH3 is used for refrigeration.

12. Assertion : The cyanide radical is a pseudo halide.

Reason : The cyanide radical undergoes read

The cyanide radical undergoes reactions similar to those of halide. [MP PMT 2008]

13. Assertion : Chlorine and sulphur dioxide both are

bleaching agents.

Reason : The bleaching action of chlorine and

sulphur dioxide is performed through the

process of oxidation. [AIIMS 2000]

14. Assertion : Halogens do not occur in free state.

Reason : Halogens are highly reactive.

[AIIMS 1994]

15. Assertion : Halogens absorb visible light.

Reason : All halogens are coloured. [AIIMS 2002]

16. Assertion : F - F bond in F_2 molecule is strong.

Reason : F atom is small in size. [AIIMS 2007]

17. Assertion : Chlorine has higher electron affinity than

fluorine.

Reason : Chlorine is a poor oxidising agent than

fluorine. [AIIMS 2007]

18. Assertion : Xenon forms fluorides.

Reason : Due to the strong electronegativity of

fluorine. [AIIMS 2001]

19. Assertion : The fluorine has lower reactivity.

Reason : F - F bond has low bond dissociation

energy. [AIIMS 2002]

20. Assertion : Inert gases are monoatomic.

Reason : Inert gases have stable configuration.

[AIIMS 1999]

24. The p -Block Elements (Nitrogen, Oxygen, Halogen and Noble Family) – Answers Keys

. Ni	trog	en Fa	mily	e wes				+0.00		3. H	alog	en Fa	mily	prints		48		20000	
1	d	2	d	3	b	4	a	5	a	1	a	2	a	3	b	4	a	5	a
6	a	7	d	8	a	9	b	10	c	6	a	7	С	8	С	9	a	10	c
11	С	12	b	13	ь	14	d	15	ь	11	b	12	a	13	b	14	a	15	b
16	a	17	ь	18	b	19	a	20	d	16	d	17	a	18	b	19	a	20	d
21	b	22	b	23	d	24	a	25	a	21	a	22	a	23	a	24	с	25	a
26	ь	27	a	28	a	29	a	30	d	26	С	27	a	28	d	29	d	30	d
31	d	32	b	33	d	34	a	35	d	31	d	32	b	33	С	34	a	35	b
36	ь	37	С	38	a	39	С	40	b	36	a	37	a	38	С	39	d	40	С
41	a	42	c	43	c	44	a	45	a	41	d	42	a	43	d	44	С	45	d
46	a	47	c	48	a	49	b	50	ь	46	С	47	d	48	b	49	a	50	b
51	a	52	a	53	С	54	c	55	С	51	d	52	ь	53	,b	54	С		
56	d	57	С	58	b	59	с	60	a	4. N	oble	Gase	s						
61	С	62	d	63	С	64	d	65	С	1	a	2	С	3	С	4	b	5	a
66	a	67	a							6	a	7	b	8	С	9	a	10	a
			!!. /							11	d	12	С	13	С	14	b	15	a
2. 0	xyge	en Fa	mily							16	С	17	С	18	с				
1	d	2	С	3	b	4	d	5	С	5. II	T-JE	E/AIE	EE						
6	С	7	d	8	a	9	b	10	a	1	d	2	С	3	a	4	ь	5	d
11	С	12	b	13	a	14	c	15	a	6	d	7	ь	8	a	9	a	10	c
16	С	17	a	18	d	19	d	20	ь	11	a	12	b	13	b	14	a	15	d
21	d	22	a	23	d	24	a	25	b	16	d	17	d	18	d	19	b	20	c
26	a	27	ь	28	c	29	c	30	ь	21	b	22	b	23	С	24	d	25	c
31	ь	32	С	33	a	34	ь	35	d	26	b	27	a	28	a	29	a	30	a
										31	ь	32	c	33	d	34	С	35	d

36	c	37	d	38	b	39	a	40	d
41	d	42	d	43	b	44	С	45	d
46	b	47	d	48	ь	49	С	50	d
51	b	52	a	53	С	54	a	55	a
56	d	57	ь	58	d	59	a		
. N	EET	AIPN	AT/ C	BSE-	РМТ	34130			
1	С	2	a	3	a	4	С	5	d
6	d	7	a	8	b	9	a	10	a
11	d	12	ь	13	b	14	a	15	b
16	a	17	ь	18	d	19	a	20	d
21	С	22	с	23	d	24	С	25	c
26	b	27	a	28	a	29	С	30	b
31	С	32	b	33	b	34	c	35	а
36	b	37	С	38	b	39	d	40	b
41	c	42	С	43	a	44	ь	45	а

48

c

c

46

47

c

49

50

A	IIMS								
1	a	2	b	3	a	4	a	5	a
6	d	7	d	8	b	9	d,	10	a
11	c b	12	a	13	a d	14	c	15	d
16		17	ь	18		19	с	20	a
21	d	22	ь	23	d	24	b	25	b
26	a	27	С	28	ь	29	d	30	С
31	a	32	d						
. А	sser	tion 8	k Re	ason					
1	a	2	С	3	e	4	b	5	С
6	b	7	a	8	a	9	b	10	b
11	d	12	a	13	С	14	a	15	а
16	e	17	ь	18	a	19	e	20	а