## 25. d- and f- Block Elements – Multiple Choice Questions

## 1. General Characteristics

- 1. Which of the following set has all the coloured ions
  - (a)  $Cu^+, Cu^{2+}, Ni^{2+}$
- (b)  $Cu^{2+}$ ,  $Co^{2+}$ ,  $Sc^{3+}$
- (c)  $Cu^{2+}$ ,  $Fe^{2+}$ ,  $Co^{2+}$
- (d)  $Na^+, Ma^{2+}, Al^{3+}$
- 2. Which of the following ions has the smallest radius
  - (a)  $Ti^{2+}$
- (b) Ni<sup>2+</sup>
- (c)  $Pt^{2+}$
- (d)  $Zr^{2+}$
- **3.** For which element of first transition series the oxidation potential value  $(M \rightarrow M^{2+} + 2e^{-})$  is lowest
  - (a) Mn

(b) Fe

(c) Ni

- (d) Cu
- **4.** Which one of the following sets correctly represents the increase in the paramagnetic property of the ions
  - (a)  $Cu^{2+} > V^{2+} > Cr^{2+} > Mn^{2+}$
  - (b)  $Cu^{2+} < Cr^{2+} < V^{2+} < Mn^{2+}$
  - (c)  $Cu^{2+} < V^{2+} < Cr^{2+} < Mn^{2+}$
  - (d)  $V^{2+} < Cu^{2+} < Cr^{2+} < Mn^{2+}$
- The tendency of 3d-metal ions to form stable complexes is due to their
  - (a) Variable oxidation state
  - (b) Strong electronegative nature
  - (c) High charge/size ratio and vacant d-orbitals
  - (d) Very low ionization energies
- The colour imparted by Co(II) compounds to glass is
  - (a) Green
- (b) Deep-blue
- (c) Yellow
- (d) Red
- The metal ion which does not form coloured compound is
  - (a) Chromium
- (b) Manganese
- (c) Zinc
- (d) Iron
- Which one of the following has a magnetic moment of 1.75 B.M
  - (a) Ti3+
- (b)  $V^{3+}$
- (c)  $Cr^{3+}$
- (d)  $Fe^{3+}$

- 9. Which of the following may be colourless
  - (a)  $Cr^{+3}$
- (b) Cu+
- (c)  $Fe^{+3}$
- (d) Cu2+
- **10.** In which of the following ions, *d-d* transition is not possible
  - (a)  $Ti^{4+}$
- (b) Cr3+
- (c)  $Mn^{2+}$
- (d)  $Cu^{2+}$
- 11. Sc(Z = 21) is a transition element but Zn(Z = 30) is not because
  - (a) Both  $Sc^{3+}$  and  $Zn^{2+}$  ions are colourless and form white compounds
  - (b) In case of Sc, 3d orbitals are partially filled but in Zn these are filled
  - (c) Last electron is assumed to be added to 4s level in case of Zn
  - (d) Both Sc and Zn do not exhibit variable oxidation states
- **12.**  $[Sc(H_2O)_6]^{3+}$  ion is
  - (a) Colourless and diamagnetic
  - (b) Coloured and octahedral
  - (c) Colourless and paramagnetic
  - (d) Coloured and paramagnetic
- **13.** The highest oxidation state shown by any transition elements is
  - (a) +8
- (b) +5
- (c) +6
- (d) +7
- 14. Identify the metal that forms colourless compounds
  - (a) Iron (Z = 26)
- (b) Chromium (Z = 24)
- (c) Vanadium (Z = 23)
- (d) Scandium (Z = 21)
- 15. Transition metal with low oxidation number will act as
  - (a) A base
- (b) An acid
- (c) An oxidising agent
- (d) None of these
- 16. Which of the following pair of transitional elements exhibit highest and lowest density
  - (a) Os and Sc
- (b) Os and Pt
- (c) Hg and Sc
- (d) Os and Ir

- 17. The atomic radii from Cr to Cu is almost identical because (a) Increasing nuclear charge from Cr to Cu (b) Repulsion among increased electrons (c) Increased screening effect to nullify increased nuclear charge (d) All the above **18.** Electronic configuration of a transition element X in +3oxidation state is  $[Ar]3d^5$ . What is its atomic number (a) 25 (b) 26(c) 27 (d) 24
- 19. Generally, transition elements form coloured salts due to the presence of unpaired electrons. Which of the following compounds will be coloured in solid state
  - (a)  $Ag_2SO_4$
- (b) CuF<sub>2</sub>
- (c)  $ZnF_2$
- (d) Cu<sub>2</sub>Cl<sub>2</sub>
- 20. Coinage metals are present in
  - (a) s-block
- (b) d-block
- (c) p-block
- (d) f-block
- 21. Consider the following salts: NaCl, HgCl2, Hg2Cl2, CuCl2, and AgCl. Identify the correct set of insoluble salts in water
  - (a) Hg<sub>2</sub>Cl<sub>2</sub>, CuCl, AgCl
- (b) HgCl2, CuCl, AgCl
- (c)  $Hg_2Cl_2$ ,  $CuCl_2$ , AgCl (d)  $Hg_2Cl_2$ , CuCl, NaCl
- 22. In the first transition series, the highest b.p. and m.p. is of
  - (a) Cr
- (b) V
- (d) Fe
- 23. Which of the following has second ionisation potential less than expected
  - (a) Cr
- (b) Zn

(c) V

- (d) Mo
- 24. In which of the following, metallic bond is strongest
  - (a) Fe

(b) Sc

(c) V

- (d) Cr
- 25. The correct order of density is
  - (a) Cu > Ni > Zn > Sc
- (b) Ni > Cu > Zn > Sc
- (c) Zn > Cu > Ni > Sc
- (d) Sc > Zn > Ni > Cu
- **26.** Which of the following is not a ferromagnetic substance
  - (a) Cobalt
- (b) Nickel
- (c) Manganese
- (d) Iron

- 27. Which among following transition metals does not show variable oxidation states
  - (a) Cu
- (b) Fe

(c) Ni

- (d) Sc
- 28. Super conductors are derived from compounds of
  - (a) p-block elements
- (b) Lanthanides
- (c) Actinides
- (d) Transition elements
- 29. Irregular trend in the standard reduction potential value of first row transition elements is due to
  - (a) Regular variation of first and second ionisation enthalpies
  - (b) Irregular variation of sublimation enthalpies
  - (c) Regular variation of sublimation enthalpies
  - (d) Increase in no. of unpaired electrons
- 30. Metallic radii of some transition elements are given below. Which of these elements will have highest density

| Element              | Fe  | Co  | Ni  | Cu  |
|----------------------|-----|-----|-----|-----|
| Metallic<br>radii/pm | 126 | 125 | 125 | 128 |

- (a) Fe
- (b) Ni
- (c) Co
- (d) Cu
- 31. Which of the following reactions are disproportionation reactions

A. 
$$Cu^+ \longrightarrow Cu^{2+} + Cu$$

B. 
$$3MnO_4^- + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$$

C. 
$$2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$$

D. 
$$2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$$

(a) (i)

- (b) (i), (ii) and (iii)
- (c) (ii), (iii) and (iv)
- (d) (i) and (iv)
- 32. Interstitial compounds are formed when small atoms are trapped inside the crystal lattice of metals. Which of the following is not the characteristic property of interstitial compounds
  - (a) They have high melting points in comparison to pure metals
  - (b) They are very hard
  - (c) They retain metallic conductivity
  - (d) They are chemically very reactive

| 33          | <ol><li>Which of the following</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng statements is not correct                                 | 41          | In and Ha halo                                               |                                                                                   |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
|             | (a) Copper liberates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                              | 71.         |                                                              | ng to the same group, they differ in many  The property that is shared by both is |  |  |
|             | (b) In its higher oxid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dation states, manganese forms stable<br>oxygen and fluorine |             | (a) They form oxid                                           | de readily                                                                        |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3+ are oxidising agents in aqueous                           |             | (b) They react with                                          | •                                                                                 |  |  |
|             | solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | agents in aqueous                                            |             |                                                              | n hot concentrated sulphuric acid                                                 |  |  |
|             | (d) $Ti^{2+}$ and $Cr^{2+}$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | are reducing agents in aqueous solution                      | 40          |                                                              | n hot sodium hydroxide                                                            |  |  |
| 34          | **** . 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | amalgam                                                      | 42.         | surgery are made u                                           | necessary, the plate, screw or wire used for up of                                |  |  |
|             | (a) Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) Co                                                       |             | (a) Ni                                                       | (b) Au                                                                            |  |  |
|             | (c) Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) Zn                                                       |             | (c) Pt                                                       | (d) Ta                                                                            |  |  |
| 35.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 43.         |                                                              | nt metal (alloy) generally used in tip of nib                                     |  |  |
| 33.         | The number of unpaired electrons in gaseous species of $Mn^{3+}$ , $Cr^{3+}$ and $V^{3+}$ respectively are and most stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |             | of fountain pen is                                           |                                                                                   |  |  |
|             | species is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | respectively are and most stable                             |             | (a) Os.Ir                                                    | (b) Pt.Cr                                                                         |  |  |
|             | (a) 4 3 and 2 and 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3+:                                                          |             | (c) V.Fe                                                     | (d) Fe.Cr                                                                         |  |  |
|             | (a) 4, 3 and 2 and $V^{3+}$ is most stable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |             | Which of the following is a transition element as per the    |                                                                                   |  |  |
|             | (b) 3, 3 and 2 and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r <sup>3+</sup> is most stable                               |             | ground state electronic configuration                        |                                                                                   |  |  |
|             | (c) 4, 3 and 2 and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $r^{3+}$ is most stable                                      |             | (a) Au                                                       | (b) Hg                                                                            |  |  |
|             | (d) 3, 3 and 3 and <i>M</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n <sup>3+</sup> is most stable                               | 45          | (c) Cd  Bullet proof steel a                                 | (d) Zn                                                                            |  |  |
| 36.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | 40.         |                                                              | lloy is prepared by using                                                         |  |  |
|             | The electronic configuration of $Cu(II)$ is $3d^9$ where as that of $Cu(I)$ is $3d^{10}$ . Which of the following is correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |             | (a) Sc<br>(c) Zr                                             | (b) Ni •                                                                          |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |             |                                                              | (d) Zn                                                                            |  |  |
|             | (a) Cu(II) is more sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | 40.         | The test of ozone (                                          |                                                                                   |  |  |
|             | (b) Cu(II) is less stabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le                                                           |             | (a) <i>Ag</i>                                                | (b) Hg                                                                            |  |  |
|             | (c) $Cu(I)$ and $Cu(II)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | are equally stable                                           |             | (c) Au                                                       | (d) Cu                                                                            |  |  |
|             | (d) Stability of $Cu(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) Stability of $Cu(I)$ and $Cu(II)$ depends on nature of   |             |                                                              | ring pairs of elements cannot form an alloy                                       |  |  |
|             | copper salts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |             | (a) Zn,Cu                                                    | (b) Fe,Hg                                                                         |  |  |
| <b>37</b> . | Which of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g is amphoteric oxide                                        |             | (c) Fe,C                                                     | (d) Hg, Na                                                                        |  |  |
|             | $Mn_2O_7, CrO_3, Cr_2O_3, Cr_$ | $CrO, V_2O_5, V_2O_4$                                        | 48.         | Identify a 'Chemical twin' among the followings              |                                                                                   |  |  |
|             | (a) $V_2O_5, Cr_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) $Mn_2O_7$ , $CrO_3$                                      |             | (a) Zr-Ta                                                    | (b) Nb-Tc                                                                         |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |             | (c) Hf-Re                                                    | (d) Nb-Ta                                                                         |  |  |
|             | (c) $CrO$ , $V_2O_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (d) $V_2O_5, V_2O_4$                                         | 49.         | The electroplating                                           | of chromium is undertaken because                                                 |  |  |
| 38.         | The electronic configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ration of Ag atom is                                         |             | (a) Electrolysis of a                                        | chromium is easier                                                                |  |  |
|             | (a) $[Kr]3d^{10}4s^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b) $[Xe]4f^{14}d^{10}6s^1$                                  |             |                                                              | form alloys with other metals                                                     |  |  |
|             | (c) $[Kr]4d^{10}5s^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $[Kr]4d^95s^2$                                           |             | (c) Chromium give<br>base metal                              | es protective and decorative coating to the                                       |  |  |
| 39.         | Chlorida of which of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne following elements will be coloured                       |             |                                                              | activity of metallic chromium                                                     |  |  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) Mercury                                                  | <b>50</b> . | In first transition because                                  | series, the melting point of $Mn$ is low                                          |  |  |
|             | (a) Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |             |                                                              | Personal Company of the Company of Equation 1                                     |  |  |
| 40          | (c) Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) Cobalt                                                   |             | (a) Due to $d^{10}$ configuration, metallic bonds are strong |                                                                                   |  |  |
| 40.         | Which is an amphoteri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |             | (b) Due to d' cor                                            | nfiguration, metallic bonds are weak                                              |  |  |
|             | (a) ZnO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) CaO                                                      |             | (c) Due to $d^5$ cor                                         | nfiguration, metallic bonds are weak                                              |  |  |
| _           | (c) BaO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) SrO                                                      |             | (d) None of these                                            |                                                                                   |  |  |

| 1.          | In solution of $AgNO_{3}$ , the solu                         | tion of Cu become blue due to                        | 60.         | Which of th                        | e following oxic                 | ie nas the maxin                        | ium basicity               |
|-------------|--------------------------------------------------------------|------------------------------------------------------|-------------|------------------------------------|----------------------------------|-----------------------------------------|----------------------------|
|             | (a) Oxidation of Ag (b                                       | o) Oxidation of Cu                                   |             | (a) $La_2O_3$                      |                                  | (b) $Pr_2O_3$                           |                            |
|             | (c) Reduction of Ag (c                                       | l) Reduction of Cu                                   |             | (c) Sm <sub>2</sub> O <sub>3</sub> |                                  | (d) $Gd_2O_3$                           |                            |
| 52.         | Essential constituent of an ama                              | algam is                                             | 61.         | The atomic                         | c number of o                    | cerium (Ce) is                          | 58. The correct            |
|             | (a) Iron (b                                                  | o) An alkali metal                                   | 02.         |                                    | onfiguration of                  |                                         | 14.                        |
|             |                                                              | i) Mercury                                           |             | (a) [Xe]4f                         | 1                                | (b) $[Kr]4f^1$                          |                            |
| 53.         | Mercury is transported in metal                              | containers made of                                   |             | (c) [Xe]4f                         |                                  | (d) $[Kr]4d^1$                          |                            |
|             |                                                              | ) Lead                                               |             |                                    |                                  |                                         | nthanaida i                |
| - 4         |                                                              | d) Aluminium                                         | <b>62</b> . |                                    |                                  | ent among the la                        | nthanoids is               |
| 54.         | Which of the following transi-<br>metal                      | tion metal is present in misch                       |             | (a) Gadolir                        |                                  | (b) Holmium                             | _                          |
|             | (a) La (l                                                    | o) Sc                                                |             | (c) Promet                         |                                  | (d) Neodyniur                           |                            |
|             |                                                              | d) Cr                                                | 63.         | Which of t                         |                                  | xidation state is                       | common for all             |
| 55.         | Which one of the follow                                      | wing statements concerning                           |             | (a) +2                             |                                  | (b) +3                                  |                            |
|             | lanthanides elements is false                                |                                                      |             | (c) +4                             |                                  | (d) +5                                  |                            |
|             | exchange methods                                             | ed from one another by ion                           | 64.         | Cigarette o                        | r gas lighter is m               | nade up of                              |                            |
|             |                                                              | t lanthanides steadily increase                      |             | (a) Misch n                        | netal                            | (b) Alkali meta                         | al                         |
|             | with increase in atomic nu                                   | 1 To              |             | (c) Noble r                        | netal                            | (d) None                                |                            |
|             | (c) All lanthanides are highly                               | dense metals                                         | 65.         | Which of th                        | ne following is n                | ot an actinide                          |                            |
|             | (d) Most typical oxidation of l                              | anthanides is +3                                     |             | (a) Curium                         |                                  | (b) Californiur                         | n                          |
| <b>56</b> . | Which of the following trival                                | ent ion has the largest atomic                       |             | (c) Uraniu                         | m                                | (d) Terbium/E                           | rbium                      |
|             | radii in the lanthanide series                               |                                                      | 66.         | Which of th                        | ne following lant                | thanoid ion is pa                       | aramagnetic                |
|             | (a) <i>La</i> (                                              | b) Ce                                                |             | (a) Ce <sup>4+</sup>               |                                  | (b) $Yb^{2+}$                           |                            |
|             | (c) <i>Pm</i> (                                              | d) Lu                                                |             | (c) Lu <sup>3+</sup>               |                                  | (d) Eu <sup>2+</sup>                    |                            |
| <b>57</b> . | What is the general molecular obtained on heating lanthanous | ular formula of the products ids $(Ln)$ with sulphur | 67.         | There are                          | 14 elements i<br>lements does no |                                         | es. Which of the series    |
|             | (a) LnS (                                                    | b) LnS <sub>3</sub>                                  |             | (a) <i>U</i>                       |                                  | (b) <i>Np</i>                           |                            |
|             | (c) $Ln_3S_2$ (                                              | d) Ln <sub>2</sub> S <sub>3</sub>                    |             | (c) Tm                             |                                  | (d) Fm                                  |                            |
| <b>E</b> 0  |                                                              |                                                      | 68.         | The isoeled                        | ctronic pair of ic               | ons is                                  |                            |
| 36.         | Lanthanum is grouped with f-                                 |                                                      |             | (a) $Sc^{2+}$                      | and $V^{3+}$                     | (b) <i>Mn</i> <sup>2+</sup> and         | 1 Fe <sup>3+</sup>         |
|             | (a) It has partially filled f -orb                           |                                                      |             | (c) Mn <sup>3+</sup>               | and $Fe^{2+}$                    | (d) Ni <sup>3+</sup> and                |                            |
|             | (b) It is just before Ce in the p                            |                                                      | 69.         |                                    |                                  |                                         | state present in           |
|             | (c) It has both partially filled f                           |                                                      |             | $K_2CrO_4, I$                      | NbCl <sub>5</sub> and Mn         | $O_2$ is                                | state present in           |
|             | elements of 4f block                                         | anum are very similar to the                         |             | (a) Nb                             |                                  | (b) <i>Mn</i>                           |                            |
| 59.         | Which is not the correct stater and 4f series elements       | ment about the chemistry of 3d                       | 2           | (c) K                              |                                  | (d) Cr                                  |                            |
|             | (a) 3d elements show more elements                           | oxidation states than 4f series                      | 2.<br>1.    |                                    |                                  | sitional Ele                            | ments<br>nydrogen peroxide |
|             | (b) The energy difference bet<br>little                      | ween 3d and 4s orbitals is very                      |             | in acid med                        |                                  |                                         |                            |
|             | (c) Europium (II) is more state                              | ole than Ce(II)                                      |             |                                    | ium iodide                       | ada da |                            |
|             | (d) The paramagnetic char                                    | acter in 3d series elements                          |             |                                    | is sulphate                      |                                         |                            |

increases from scandium to copper

(c) Ferrous sulphate

(d) Potassium ferrocyanide

| 2.  | (a) Pb+Sn                                                            | (1) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.         |                                    | n dil. $H_2SO_4$ instead of distilled                                        |
|-----|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|------------------------------------------------------------------------------|
|     | (c) $Cu + Zn$                                                        | (b) $Cu + Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | water to                           |                                                                              |
| _   |                                                                      | (d) $Pb + Zn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | (a) Enhance the rate of di         |                                                                              |
| 3.  |                                                                      | mparts green colour to the glass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | (b) Prevent cationic hydro         |                                                                              |
|     | (a) Cu <sub>2</sub> O                                                | (b) CdS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | (c) Increase the rate of ion       |                                                                              |
|     | (c) MnO <sub>2</sub>                                                 | (d) $Cr_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15          | (d) Increase its reducing s        |                                                                              |
| 4.  | Silvering of mirror is don                                           | e by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.         | mohr salt is dissolved in exc      | le are produced in the solution when<br>cess of water                        |
|     | (a) $AgNO_3$                                                         | (b) $Ag_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | (a) 6                              | (b) 4                                                                        |
|     | (c) $Fe_2O_3$                                                        | (d) $Al_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | (c) 10                             | (d) 5                                                                        |
| 5.  | Which of the following con                                           | mpounds volatilises on heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.         | Verdigris is                       |                                                                              |
|     | (a) MgCl <sub>2</sub>                                                | (b) HgCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | (a) Basic copper acetate           | (b) Basic lead acetate                                                       |
|     |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | (c) Basic lead                     | (d) None of these                                                            |
|     | (c) CaCl <sub>2</sub>                                                | (d) FeCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.         | Molybdenum compounds               |                                                                              |
| 6.  | Which can be reduced to<br>of hydrogen                               | the metal by heating it in a stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | (a) Dye industry                   | (b) For colouring leather                                                    |
|     |                                                                      | The second secon | 10          | (c) For colouring rubber           | (d) All of these                                                             |
|     | (a) Copper (II) oxide                                                | (b) Magnesium oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.         | Duralumin is an alloy of           | (b) Al . Ma . Ni . Ma                                                        |
|     | (c) Aluminium oxide                                                  | (d) Calcium oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | (a) Al + Mn                        | (b) $Al + Mg + Ni + Mn$                                                      |
| 7.  | Which of the following is a                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | (c) $Al + Mg + Ni$                 | (d) $Al + Mg + Mn + Cu$                                                      |
|     | (a) Wurtzite                                                         | (b) Iron pyrites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.         | Which of the following is u        |                                                                              |
|     | (c) Chalcosite                                                       | (d) Silver glance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | (a) Aq. CuSO <sub>4</sub> solution | (b) Aq. AgNO <sub>3</sub> solution                                           |
| 8.  | Mond's process is used fo                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | (c) Aq. NaCl solution              | (d) Aq. NaOH solution                                                        |
|     | (a) Ni                                                               | (b) <i>AI</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>20</b> . | The least stable oxide at ro       | om temperature is                                                            |
|     | (c) Fe                                                               | (d) <i>Cu</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | (a) ZnO                            | (b) CuO                                                                      |
| 9.  | Guignet's green is known                                             | as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | (c) $Sb_2O_3$                      | (d) $Ag_2O$                                                                  |
|     | (a) $Cr_2O_3$ . $2H_2O$                                              | (b) $FeO_3.2H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.         | Vanadium (III) oxide is a st       | rong                                                                         |
|     | (c) Cu <sub>2</sub> O <sub>3</sub>                                   | (d) FeCO <sub>3</sub> .Cr <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | (a) Drying agent                   | (b) Oxidising agent                                                          |
| 10. | Green vitriol is                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | (c) Reducing agent                 | (d) Wetting agent                                                            |
|     | (a) CuSO <sub>4</sub> .5H <sub>2</sub> O                             | (b) FeSO <sub>4</sub> .7H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | (e) Precipitating agent            |                                                                              |
|     |                                                                      | (d) $ZnSO_4.7H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.         | In the equation                    |                                                                              |
| • • | (c) CaSO <sub>4</sub> .2H <sub>2</sub> O                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | $4M + 8CN^- + 2H_2O + O_2$         | $\longrightarrow$ 4[M(CN <sub>2</sub> )] <sup>-</sup> + 4OH <sup>-</sup> The |
| 11. |                                                                      | I that is not used for plating is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | metal M is                         |                                                                              |
|     | (a) Fe                                                               | (b) Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | (a) Copper                         | (b) Iron                                                                     |
| 10  | (c) Ni                                                               | (d) Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | (c) Gold                           | (d) Zinc                                                                     |
| 12. | The metal which is the bes                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>23</b> . | The nitrate of which metal         | left globule on heating strongly                                             |
|     | (a) Iron                                                             | (b) Copper (d) Aluminium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | (a) $Pb(NO_3)_2$                   | (b) NaNO <sub>3</sub>                                                        |
| 12  | (c) Silver                                                           | to the atmosphere for some time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | (c) AgNO <sub>3</sub>              | (d) Cu(NO <sub>3</sub> ) <sub>2</sub>                                        |
| 10. | h metal when left exposed<br>becomes coated with gree<br>question is | en basic carbonate. The metal in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.         | Out of following which comwood     | npound is used for preservation of                                           |
|     | (a) Copper                                                           | (b) Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | (a) NaCl                           | (b) HgCl <sub>2</sub>                                                        |
|     | (c) Silver                                                           | (d) Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | (c) ZnCl <sub>2</sub>              |                                                                              |
|     | ,,, onver                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 2                                  | (d) CaCl <sub>2</sub>                                                        |

| 25.         | Hydroxide soluble in ami                                            | nonia is                                                             |
|-------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
|             | (a) Al(OH) <sub>3</sub>                                             | (b) $Fe(OH)_3$                                                       |
|             | (c) Cr(OH) <sub>3</sub>                                             | (d) Cu(OH) <sub>2</sub>                                              |
| 26.         | Ammonia is a Lewis base<br>Which one of the followi<br>with ammonia | e. It forms complexes with cations. ng cations does not form complex |
|             | (a) Ag <sup>+</sup>                                                 | (b) $Cu^{++}$                                                        |
|             | (c) Cd <sup>++</sup>                                                | (d) Pb <sup>++</sup>                                                 |
| <b>27</b> . | $MSO_4 \xrightarrow{NH_4OH} \downarrow X_{white}$                   | $\xrightarrow{NH_4OH} Y \xrightarrow{H_2S} \downarrow Z$             |
|             | Here $M$ and $Z$ are                                                |                                                                      |
|             | (a) Fe, FeS                                                         | (b) Cu, ZnS                                                          |
|             | (c) Al, Al <sub>2</sub> S <sub>3</sub>                              | (d) Zn, ZnS                                                          |
| 28.         | The trace metal present in                                          |                                                                      |
|             | (a) Iron                                                            | (b) Cobalt                                                           |
|             | (c) Zinc                                                            | (d) Manganese                                                        |
| 29.         | Bulletproof helmets are n                                           | 2 1/2 1                                                              |
|             | (a) Lexan                                                           | (b) Saran                                                            |
|             | (c) Glyptal                                                         | (d) Thiokol                                                          |
|             | When sulphur dioxide is                                             | passed in an acidified $K_2Cr_2O_7$ te of sulphur is changed from    |
|             | (a) $+ 4 \text{ to } + 6$                                           | (b) $+ 6 \text{ to } + 4$                                            |
|             | (c) $+ 4$ to 0                                                      | (d) + 4 to + 2                                                       |
| 31.         | In which of the following smallest                                  | ionic radii of chromium would be                                     |
|             | (a) $Al$ , $Al_2S_3$                                                | (b) CrO <sub>2</sub>                                                 |
|             | (c) CrCl <sub>3</sub>                                               | (d) CrF <sub>2</sub>                                                 |
| <b>32</b> . | The colour of $K_2Cr_2O_7$                                          | changes from red orange to lemon                                     |
|             | yellow on treatment with                                            | aqueous KOH because of                                               |
|             | (a) The reduction of $Cr^{V}$                                       | to Cr <sup>III</sup>                                                 |
|             | (b) The formation of chro                                           | omium hydroxide                                                      |
|             | (c) The conversion of dic                                           | hromate to chromate                                                  |
|             | (d) The oxidation of poperoxide                                     | otassium hydroxide to potassium                                      |
| <b>33</b> . | Chrome green is                                                     |                                                                      |
|             | (a) Chromium sulphate                                               | (b) Chromium chloride                                                |
|             | (c) Chromium nitrate                                                | (d) Chromium oxide                                                   |
| 34.         |                                                                     | is the green coloured powder                                         |
|             |                                                                     | um dichromate is used in fire works                                  |

(b) CrO<sub>3</sub>

(d)  $CrO(O_2)$ 

(a) Cr

(c)  $Cr_2O_3$ 

- **35.** When acidified  $K_2Cr_2O_7$  solution is added to  $Sn^{2+}$  salt then Sn2+ changes to (b) Sn<sup>3+</sup> (a) Sn (d) Sn+ (c) Sn4+ **36.** In the reduction of dichromate by Fe(II) the number of electrons involved per chromium atom is (b) 3(a) 2 (d) 1 (c) 4 37. The orange solid on heating gives a colourless gas and a green solid which can be reduced to metal by aluminium powder. The orange and the green solids are respectively (a)  $(NH_4)_2Cr_2O_7$  and  $Cr_2O_3$  (b)  $Na_2Cr_2O_7$  and  $Cr_2O_3$ (c)  $K_2Cr_2O_7$  and  $CrO_3$  (d)  $(NH_4)_2Cr_2O_4$  and  $CrO_3$ 38. The reddish brown gas produced by heating KCI with  $K_2Cr_2O_7$  (solid) and conc.  $H_2SO_4$  is (b) CrO<sub>2</sub>Cl<sub>2</sub> (a) Cl<sub>2</sub>
  - **39.** When  $H_2O_2$  is shaken with an acidified solution of  $K_2Cr_2O_7$  in presence of ether, the ethereal layer turns blue due to the formation of
    - (a)  $Cr_2O_3$

(c) CrO<sub>3</sub>

(b)  $CrO_4^{2-}$ 

(d)  $H_2CrO_4$ 

- (c)  $Cr_2(SO_4)_3$
- (d) CrO<sub>5</sub>
- 40. How is sodium chromate converted into sodium dichromate in the manufacture of potassium dichromate from chromite ore
  - (a) By the action of concentrated sulphuric acid
  - (b) By roasting with soda ash
  - (c) By the action of sodium hydroxide
  - (d) By the action of lime stone
- **41.** Which of the following gases turns the acidified potassium dichromate paper green
  - (a) HCI
- (b) H<sub>2</sub>S
- (c) CO<sub>2</sub>
- (d)  $SO_2$
- 42. Which of the following is formed when CO<sub>2</sub> gas is passed through aqueous solution of sodium chromate
  - (a) Cr(OH)<sub>3</sub> is precipitated
  - (b) Yellow solution of  $Cr_2(CO_3)_3$  is formed
  - (c) Orange solution of Na<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> is formed
  - (d) No reaction

- 43. Acidified solution of chromic acid on treatment with hydrogen peroxide yields
  - (a)  $CrO_3 + H_2O + O_2$
- (b)  $Cr_2O_3 + H_2O + O_2$
- (c)  $CrO_5 + H_2O$
- (d)  $H_2Cr_2O_7 + H_2O + O_9$
- **44.** In aqueous solution,  $Cr^{2+}$  is stronger reducing agent than Fe2+. This is because
  - (a)  $Cr^{2+}$  ion is more stable than  $Fe^{2+}$
  - (b)  $Cr^{3+}$  ion with  $d^3$  configuration has favourable crystal field stabilisation energy
  - (c)  $Cr^{3+}$  has half-filled configuration and hence more stable
  - (d)  $Fe^{3+}$  in aqueous solution is more stable than  $Cr^{3+}$
  - (e)  $Fe^{2+}$  ion with  $d^6$  configuration has favourable crystal field stabilization energy
- 45. The correct order of increasing oxidizing power in the series is
  - (a)  $VO_2^+ < Cr_2O_7^{2-} < MnO_4^-$  (b)  $Cr_2O_7^{2-} < VO_2^+ < MnO_4^-$
  - (c)  $Cr_2O_7^{2-} < MnO_4^- < VO_2^+$  (d)  $MnO_4^- < Cr_2O_7^{2-} < VO_2^+$
- **46.**  $Mn^{2+}$  compounds are more stable than  $Fe^{2+}$  compounds towards oxidation to their +3 state, because
  - (a)  $Mn^{2+}$  is more stable with high  $3^{rd}$  ionisation energy
  - (b)  $Mn^{2+}$  is bigger in size
  - (c)  $Mn^{2+}$  has completely filled d-orbitals
  - (d)  $Mn^{2+}$  does not exist
- 47. Potassium permanganate acts as an oxidant in neutral, alkaline as well as acidic media. The final products obtained from it in the three conditions are, respectively
  - (a)  $MnO_2$ ,  $MnO_2$ ,  $Mn^{2+}$
- (b)  $MnO_4^{2-}, Mn^{3+}, Mn^{2+}$
- (c)  $MnO_2, MnO_4^{2-}, Mn^{3+}$  (d)  $MnO, MnO_4, Mn^{2+}$
- **48.** Which oxide of manganese is amphoteric
  - (a) MnO<sub>2</sub>
- (b)  $Mn_2O_3$
- (c)  $Mn_2O_7$
- (d) MnO
- **49.**  $MnO_4^-$  reacts with  $Br^-$  in alkaline pH to give
  - (a)  $BrO_3^-, MnO_2$
- (b)  $Br_2, MnO_4^{2-}$
- (c)  $Br_2$ ,  $MnO_2$
- (d)  $BrO^-, MnO_4^{2-}$
- 50. Which of the following statement is incorrect for KMnO<sub>4</sub>
  - (a) It is an oxidizing agent
  - (b) It is used as antiseptic
  - (c) It is used as bleaching agent in textile industries
  - (d) It is dark purple coloured amorphous substance

- **51.**  $Mn^{++}$  can be converted into  $Mn^{7+}$  by reacting with
  - (a) SO<sub>2</sub>
- (b) Cl<sub>2</sub>
- (c) PbO<sub>2</sub>
- (d) SnCl<sub>2</sub>
- **52.** Formula of thiosulphate, manganate respectively are
  - (a)  $S_4O_6^{2-}$ ,  $MnO_4^{2-}$ ,  $AsO_3^{3-}$  (b)  $S_2O_3^{2-}$ ,  $MnO_4^{2-}$ ,  $AsO_4^{3-}$
  - (c)  $S_2O_3^{2-}$ ,  $Mr_1O_4^{2-}$ ,  $AsO_3^{3-}$  (d)  $S_4O_6^{2-}$ ,  $Mr_1O_4^{2-}$ ,  $AsO_4^{3-}$
- **53.** When a brown compound of Mn(A) is treated with HCI, it gives a gas (B). The gas (B) taken in excess reacts with  $NH_3$ to give an explosive compound (C).

The compounds A, B and C are

(a) 
$$A = MnO_2, B = Cl_2, C = NCl_3$$

(b) 
$$A = MnO, B = Cl_2, C = NH_3Cl$$

(c) 
$$A = Mn_3O_4, B = Cl_2, C = NCl_3$$

- (d)  $A = MnO_3, B = Cl_2, C = NCl_2$
- 54. On addition of small amount of KMnO<sub>4</sub> to concentrated  $H_2SO_4$ , a green oily compound is obtained which is highly explosive in nature. Identify the compound from the following
  - (a)  $Mn_2O_7$
- (b) MnO<sub>2</sub>
- (c) MnSO<sub>4</sub>
- (d)  $Mn_2O_3$
- 55. When KMnO<sub>4</sub> solution is added to oxalic acid solution, the decolourisation is slow in the beginning but becomes instantaneous after some time because
  - (a) CO2 is formed as the product
  - (b) Reaction is exothermic
  - (c)  $MnO_4^-$  catalyses the reaction
  - (d) Mn2+ acts as autocatalyst
- **56.**  $KMnO_4$  acts as an oxidising agent in acidic medium. The number of moles of  $KMnO_4$  that will be needed to react with one mole of sulphide ions in acidic solution is
  - (a)  $\frac{2}{5}$

(b)  $\frac{3}{5}$ 

(c)  $\frac{4}{5}$ 

(d)  $\frac{1}{5}$ 

| <b>57</b> . | KMnO <sub>4</sub> acts as an oxidising agent in alkaline medium, when    | 65.         | The process of zinc-plat                                        | ing on iron sheet is known as                  |  |  |
|-------------|--------------------------------------------------------------------------|-------------|-----------------------------------------------------------------|------------------------------------------------|--|--|
|             | alkaline $KMnO_4$ is treated with $KI$ , iodide ion is oxidised          |             | (a) Aneling                                                     | (b) Roasting                                   |  |  |
|             | to                                                                       |             | (c) Galvanization                                               | (d) Smelting                                   |  |  |
|             | (a) $I_2$ (b) $IO^-$                                                     | 66.         | When ferric oxide reacts                                        | s with NaOH, the product formed is             |  |  |
|             | (c) $IO_3^-$ (d) $IO_4^-$                                                |             | (a) NaF                                                         | (b) FeCl <sub>3</sub>                          |  |  |
| <b>58</b> . |                                                                          |             | (c) Fe(OH) <sub>3</sub>                                         | (d) NaFeO <sub>2</sub>                         |  |  |
|             | oxidation reactions of $\mathit{KMnO}_4$ in acidic medium                | 67.         | Stainless steel does not                                        | rust because                                   |  |  |
|             | (a) Both HCl and KMnO <sub>4</sub> act as oxidising agents               |             | (a) Chromium and nick                                           | el combine with iron                           |  |  |
|             | (b) $KMnO_4$ oxidises $HCl$ into $Cl_2$ which is also an oxidising agent |             | (b) Chromium forms ar rusting                                   | n oxide layer and protects iron from           |  |  |
|             | the transfer of the market with the section of                           |             | (c) Nickel present in it,                                       | does not rust                                  |  |  |
|             | (c) $KMnO_4$ is a weaker oxidising agent than $HCI$                      |             | (d) Iron forms a hard of present in it                          | chemical compound with chromium                |  |  |
|             | (d) $KMnO_4$ acts as a reducing agent in the presence of $HCI$           | 60          | Rust is                                                         |                                                |  |  |
| <b>59</b> . | Reaction of solid $KMnO_4$ with conc. $H_2SO_4$ produces                 | 00.         |                                                                 | (h) Fo O                                       |  |  |
|             | manganese heptoxide $(Mn_2O_7)$ in                                       |             | (a) $FeO + Fe(OH)_2$                                            |                                                |  |  |
|             | (a) Solution state (b) Solid state                                       |             | (c) $Fe_2O_3 + Fe(OH)_2$                                        | (d) $Fe_2O_3$ and $Fe(OH)_3$                   |  |  |
|             | (c) Fine powder (d) None of these                                        | 69.         |                                                                 | steel of the following metals                  |  |  |
| 60.         | Highest oxidation state of manganese in fluoride is +4                   |             | (a) Fe Only                                                     | (b) Cr and Ni                                  |  |  |
|             | $(MnF_4)$ but highest oxidation state in oxides is $+7(Mn_2O_7)$         |             | (c) W and Cr                                                    | (d) Ni and Be                                  |  |  |
|             | because                                                                  | 70.         | Most stable oxidation sta                                       |                                                |  |  |
|             | (a) Fluorine is more electronegative than oxygen                         |             | (a) +2                                                          | (b) +3                                         |  |  |
|             | (b) Fluorine does not possess d orbitals                                 | 71          | (c) -2                                                          | (d) -3                                         |  |  |
|             | (c) Fluorine stabilises lower oxidation state                            | 71.         | Iron loses magnetic prop                                        |                                                |  |  |
|             | (d) In covalent compounds, fluorine can form single bond                 |             | <ul><li>(a) Melting point</li><li>(c) Curie point</li></ul>     | (b) 1000K                                      |  |  |
|             | only while oxygen forms double bond                                      | 72.         |                                                                 | (d) Boiling point e properties of steel due to |  |  |
| 61.         | Invar, an alloy of $Fe$ and $Ni$ is used in watches and meter            |             | (a) Chemical reaction o                                         |                                                |  |  |
|             | scale, its characteristic property is                                    |             | (b) Partial rusting                                             |                                                |  |  |
|             | (a) Small coefficient of expansion                                       |             | (c) Change in the residu                                        | ial energy                                     |  |  |
|             | (b) Resistance to corrosion                                              |             | (d) Change in the lattice structure due to differential rate of |                                                |  |  |
|             | (c) Hardness and elasticity                                              |             | cooling                                                         | o statetare due to differential fale of        |  |  |
|             | (d) Magnetic nature                                                      | <b>73</b> . | Which metal is used to                                          | make alloy steel for armour plates,            |  |  |
| <b>62</b> . | The percentage of carbon in cast iron is                                 |             | safes and helmets                                               | Mile of the American There is                  |  |  |
|             | (a) 5 – 10 (b) 0.250 – 2.5                                               |             | (a) Al                                                          | (b) <i>Mn</i>                                  |  |  |
|             | (c) $2.5 - 5.0$ (d) $0.12 - 0.2$                                         |             | (c) Cr                                                          | (d) <i>Pb</i>                                  |  |  |
| <b>63</b> . | Purest form of iron is                                                   | 74.         | Annealing is                                                    |                                                |  |  |
|             | (a) Cast iron (b) Wrought iron                                           |             | (a) Heating steel in nitro                                      | ogen and cooling                               |  |  |
|             | (c) Hot steel (d) Stainless steel                                        |             |                                                                 | ht redness and then cooling slowly             |  |  |
| 64.         | Aqueous solution of ferric chloride is                                   |             |                                                                 | n with carbon to redness                       |  |  |
|             | (a) Acidic (b) Basic                                                     |             | (d) Heating steel to high                                       | h temperature and cooling suddenly             |  |  |
|             | (c) Neutral (d) Amphoteric                                               |             | by plunging in water                                            | ta baksan na ayan shakin is da                 |  |  |

75. Iron pipes lying under acidic soil are often attached to blocks 83. Pure conc. HNO3 makes iron passive as the surface is of magnesium for protection from rusting. Magnesium offers covered with protective layer of protection to iron against corrosion because it (a)  $Fe_2O_3$ (b) FeO (a) Is more readily converted into positive ions (b) Is lighter than iron (c) Fe<sub>3</sub>O<sub>4</sub> (d)  $Fe(NO_3)_3$ (c) Forms a corrosion-resistant alloy with iron **84.** Red hot iron absorbs  $SO_2$  giving the product (d) Prevents air from reaching the surface of iron (b)  $Fe_2O_3 + FeS$ (a)  $FeS + O_2$ 76. Haemoglobin is a complex of (c) FeO+FeS (d) FeO + S(a)  $Fe^{3+}$ (b) Fe2+ 85. If steel is heated to a temperature well below red hot and is then cooled slowly, the process is called (c)  $Fe^{4+}$ (d) Cu2+ 77. Light green crystals of ferrous sulphate lose water molecule (a) Tempering (b) Hardening and turn brown on exposure to air. This is due to its oxidation (d) Annealing (c) Softening 86. Railway wagon axles are made by heating rods of iron (a) Fe<sub>2</sub>O<sub>3</sub> embedded in charcoal powder. The process is known as (b) Fe<sub>2</sub>O<sub>3</sub>.H<sub>2</sub>O (b) Sheradizing (a) Case hardening (c) Fe(OH)SO<sub>4</sub> (d)  $Fe_2O_3 + FeO$ (c) Annealing (d) Tempering 78. Dipping iron article into a strongly alkaline solution of sodium **87.** The presence of Si in steel gives it phosphate (a) Fibrous structure (b) Silicate type structure (a) Does not affect the article (c) Sheet type structure (d) None of these (b) Forms  $Fe_2O_3.xH_2O$  on the surface 88. When SCN is added to an aqueous solution containing (c) Forms iron phosphate film  $Fe(NO_3)_3$ , the complex ion produced is (d) Forms ferric hydroxide (a)  $[Fe(OH_2)_2(SCN)]^{2+}$ (b)  $[Fe(OH_2)_5(SCN)]^{2+}$ **79.** On heating  $K_4[Fe(CN)_6]$  with conc.  $H_2SO_4$  gives the gas (c)  $[Fe(OH_2)_8(SCN)]^{2+}$  (d)  $[Fe(OH_2)(SCN)]^{6+}$ (b) CO<sub>2</sub> (a) SO<sub>2</sub> 89. The protection of steel by chrome plating is due to (d) NO2 (c) CO (a) Cathodic protection **80.** How  $H_2S$  is liberated in laboratory (b) Anodic protection (a)  $FeSO_4 + H_2SO_4$ (c) Covering of steel surface (d) Formation of alloy with iron (b) FeS+dil. H2SO4 90. KI and CuSO<sub>4</sub> solution when mixed, give (c)  $FeS + conc. H_2SO_4$ (a)  $CuI_2 + K_2SO_4$ (b)  $Cu_2I_2 + K_2SO_4$ (d) Elementary  $H_2$  + elementary S(c)  $K_2SO_4 + Cu_2I_2 + I_2$ (d)  $K_2SO_4 + CuI_2 + I_2$ 81. Iron is dropped in dil. HNO<sub>3</sub>, it gives 91. Copper displaces which of the metal from their salt solutions (a) Ferric nitrate (a) AgNO<sub>3</sub> (b) ZnSO<sub>4</sub> (b) Ferric nitrate and NO2 (c) FeSO<sub>4</sub> (d) All of these (c) Ferrous nitrate and ammonium nitrate **92.** From a solution of  $CuSO_4$ , the metal used to recover copper (d) Ferrous nitrate and nitric oxide 82. Steel becomes soft and pliable by (a) Sodium (b) Iron (b) Nitriding (a) Annealing

(c) Silver

(d) Case hardening

(c) Tempering

(d) Hg

| 93. | If excess of $NH_4OH$ is added to $CuSO_4$ solution, it forms                                | <b>101.</b> When $CuSO_4$ is hydrated                | d, then it becomes                       |
|-----|----------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------|
|     | blue coloured complex which is                                                               | (a) Acidic                                           | (b) Basic                                |
|     | (a) $Cu(NH_3)_4SO_4$ (b) $Cu(NH_3)_2SO_4$                                                    | (c) Neutral                                          | (d) Amphoteric                           |
|     | (c) $Cu(NH_4)_4SO_4$ (d) $Cu(NH_4)_2SO_4$                                                    | 102. Silver nitrate produces a l                     | olack stain on skin due to               |
| 94. | When $CuSO_4$ solution is added to $K_4[Fe(CN)_6]$ , the                                     | (a) Being a strong reducing                          | ng agent                                 |
|     | formula of the product formed is                                                             | (b) Its corrosive action                             |                                          |
|     | (a) $Cu_2Fe(CN)_6$ (b) $KCN$                                                                 | (c) Formation of complex                             | k compound                               |
|     | (c) $Cu(CN)_3$ (d) $Cu(CN)_2$                                                                | (d) Its reduction to metall                          | ic silver                                |
| 95. | When metallic copper comes in contact with moisture, a                                       | 103. Which of the following<br>ammonium hydroxide so | compounds does not dissolve in<br>lution |
|     | green powdery/ pasty coating can be seen over it. This is chemically known as                | (a) AgF                                              | (b) AgBr                                 |
|     | (a) Copper sulphide - Copper carbonate                                                       | (c) AgCl                                             | (d) AgI                                  |
|     | (b) Copper carbonate - Copper sulphate                                                       | 104. Silver nitrate is mainly use                    | ed                                       |
|     | (c) Copper carbonate - Copper hydroxide                                                      | (a) In photography                                   | (b) In model formation                   |
|     | (d) Copper Sulphate - Copper sulphide                                                        | (c) As reducing agent                                | (d) As dehydrating agent                 |
| 96. | Colourless solutions of the following four salts are placed                                  | 105. Which of the following is                       | more soluble in ammonia                  |
|     | separately in four different test tubes and a strip of copper is                             | (a) AgCl                                             | (b) AgBr                                 |
|     | dipped in each one of these. Which solution will turn Blue                                   | (c) Agl                                              | (d) None of these                        |
|     | (a) $KNO_3$ (b) $AgNO_3$ (c) $Zn(NO_3)_2$ (d) $ZnSO_4$                                       | 106. The solubility of silver br formation of        | omide in hypo solution due to th         |
| 97. | The metal which can be used to obtain metallic <i>Cu</i> from                                | (a) $[Ag(S_2O_3)_2]^{-3}$                            | (b) $Ag_2SO_3$                           |
| ,,, | aqueous $CuSO_4$ solution is                                                                 | (c) $[Ag(S_2O_3)]^-$                                 | (d) $Ag_2S_2O_3$                         |
|     | (a) Na (b) Ag                                                                                | <b>107.</b> $AgNO_3$ gives a red ppt.                | with                                     |
|     | (c) Hg (d) Fe                                                                                | (a) <i>KI</i>                                        | (b) NaBr                                 |
| 98. | Identify the statement which is not correct regarding copper sulphate                        | (c) NaNO <sub>3</sub>                                | (d) K <sub>2</sub> CrO <sub>4</sub>      |
|     | (a) It reacts with KI to give iodine                                                         | 108. Which one of the following fused state          | ng is known as lunar caustic when        |
|     | (b) It reacts with $KCl$ to give $Cu_2Cl_2$                                                  | (a) Silver nitrate                                   | /h) C:1                                  |
|     | (c) It reacts with $NaOH$ and glucose to give $Cu_2O$                                        | (c) Silver chloride                                  | (b) Silver sulphate                      |
|     | (d) It give CuO on strong heating in air                                                     | 109. Which silver halide is use                      | (d) Sodium sulphate                      |
| 99. | What is the effect of shaking dil. $H_2SO_4$ with small quantity                             | (a) $AgNO_3$                                         | (b) AgCl                                 |
|     | of anhydrous $CuSO_4$                                                                        | (c) AgBr                                             | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  |
|     | (a) The white solid dissolves to form a colourless solution                                  |                                                      | (d) AgF                                  |
|     | (b) The white solid dissolves to form a green solution                                       |                                                      | er, which of the following is formed     |
|     | (c) The white solid turns blue but does not dissolve                                         | (a) $Na[Ag(CN)_2]$                                   | (b) $Na_2[Ag(CN)_2]$                     |
|     | (d) The white solid dissolves to form a blue solution                                        | (c) $Na_4[Ag(CN)_2]$                                 | (d) None of these                        |
| 100 | . Which among the following alloys is used in making instruments for electrical measurements | 111. Which of the nitrates on<br>the residue         | strong heating leaves the metal a        |
|     | (a) Stainless steel (b) Manganin                                                             | (a) AgNO <sub>3</sub>                                | (b) $Pb(NO_3)_2$                         |
|     | (c) Spiegeleisen (d) Duralumin                                                               | (c) $Cu(NO_3)_2$                                     | (d) AI(NO <sub>3</sub> ) <sub>3</sub>    |

- 112. AgCl dissolves in a solution of NH3 but not in water (a)  $NH_3$  is a better solvent than  $H_2O$ (b) Ag+ forms a complex ion with NH3
  - (c)  $NH_3$  is a stronger base than  $H_2O$ (d) The dipole moment of water is higher than  $\ensuremath{\textit{NH}}_3$
- 113. Parke's process of desilverization of lead depends upon
  - (a) Partition coefficient of silver between molten zinc/molten lead having a high value
  - (b) Partition coefficient of silver between molten zinc/molten lead having a low value
  - (c) Crystallizing out of pure lead while the silver-lead eutectic which has a lower melting point is left behind in liquid form
  - (d) Chemical combination of zinc and silver which precipitates out easily
- 114. AgCl when heated with Na2CO3 gives
  - (a) Ag<sub>2</sub>O
- (b) Ag
- (c) Ag<sub>2</sub>CO<sub>3</sub>
- (d) NaAgCO<sub>3</sub>
- 115. AgCl is dissolved in excess of each of NH3, KCN and  $Na_2S_2O_3$ . The complex ions produced in each case are
  - (a)  $[Ag(NH_3)_2]^+$ ,  $[Ag(CN)_2]^+$  and  $[Ag(S_2O_3)_2]^{3-}$
  - (b)  $[Ag(NH_3)_2]^{2+}$ ,  $[Ag(CN)_2]^{3-}$  and  $[Ag(S_2O_3)_2]^{2-}$
  - (c)  $[Ag(NH_3)_4]^{2+}$ ,  $[Ag(CN)_2]^{3-}$  and  $[Ag_2(S_2O_3)_2]^{2-}$
  - (d)  $[Ag(NH_3)_2]^+, [Ag(CN)_2]^-$  and  $[Ag(S_2O_3)_2]^{3-}$
- 116. A copper coin is completely covered with a gold film and is placed in dilute HNO3. This will result in formation of
  - (a) Gold nitrate
- (b) Copper nitrate
- (c) None of these
- (d) Purple of cassius
- 117. Name the reagent that is used in leaching of gold
  - (a) Carbon
- (b) Sodium cyanide
- (c) Carbon monoxide
- (d) Iodine
- 118. Which of the following is called white vitriol
  - (a) ZnCl<sub>2</sub>
- (b) MgSO<sub>4</sub>.7H<sub>2</sub>O
- (c)  $ZnSO_4.7H_2O$
- (d)  $Al_2(SO_4)_3$

- 119. In the metallurgy of zinc, the zinc dust obtained from roasting and reduction of zinc sulphide contains some ZnO. How is this removed
  - (a) Absorbance of ultraviolet light and re-emission of white light is employed
  - (b) Shock cooling by contact with a shower of molten lead is
  - (c) X-ray method is used
  - (d) Smelting is employed
- 120. Zinc when reacted with excess of NaOH gives
  - (a) Zinc hydroxide
- (b) Zinc oxide
- (c) Di sodium zincate
- (d) Sodium zincate
- 121. Zinc reacts with hot and concentrated  $H_2SO_4$  to give
  - (a)  $H_2$
- (b) SO<sub>2</sub>
- (c) SO<sub>3</sub>
- (d) H<sub>2</sub>S
- 122. Reaction of zinc with cold and very dilute nitric acid yields
  - (a)  $Zn(NO_3)_2 + N_2O$
- (b)  $Zn(NO_3)_2 + NO$
- (c)  $Zn(NO_3)_2 + NH_4NO_3$  (d)  $Zn(NO_3)_2 + NO_2$
- 123. What happens when aluminium and zinc salts react with an excess of NaOH
  - (a) White precipitate is formed
  - (b) White precipitate of both Zn and Al first formed redissolve in excess of NaOH
  - (c) White precipitate of A1 redissolves but that of Zn does
  - (d) White precipitate of Zn redissolves and that of Al does
- 124. The formula of corrosive sublimate is
  - (a) HgCl<sub>2</sub>
- (b) Hg<sub>2</sub>Cl<sub>2</sub>
- (c)  $Hg_2O$
- (d) Hg
- 125. The main product obtained when a solution of sodium carbonate reacts with mercuric chloride is
  - (a)  $Hg(OH)_2$
- (b) HgCO<sub>3</sub>.HgO
- (c) HgCO<sub>3</sub>
- (d) HgCO<sub>3</sub>.Hg(OH)<sub>2</sub>
- **126.** The gas produced on heating  $MnO_2$  with conc. HCl is
  - (a) Cl2
- (b) H<sub>2</sub>
- (c) O<sub>2</sub>
- (d) O<sub>3</sub>
- 127. The number of moles of  $KMnO_4$  required to oxidize one equivalent of KI in the presence of sulphuric acid is
  - (a) 5

- (b) 2
- (c) 1/2
- (d) 1/5

- 128. The number of electrons required to reduce chromium completely in  $Cr_2O_7^{2-}$  to  $Cr^{3+}$  in acidic medium, is (b) 3(a) 5 (d) 2 (c) 6 129. In alkaline medium, the reaction of hydrogen peroxide with potassium permanganate produces a compound in which the oxidation state of Mn is (b) +2(a) 2 (d) + 4(c) +3130. The major product formed in the oxidation of acetylene by alkaline KMnO4 is (b) Acetic acid (a) Ethanol (c) Formic acid (d) Oxalic acid 131. Upon heating with acidic KMnO<sub>4</sub> an organic compound produces hexan - 1, 6 - dioic acid as the major product the starting compound is (b) Cyclohexene (a) Benzene (c) 1- methylcyclohexene (d) 2-methylcyclohexene IIT-JEE/ AIEEE Of the following outer electronic configuration of atoms, the highest oxidation state is achieved by which one of them (b)  $(n-1)d^8ns^2$ (a)  $(n-1)d^5ns^2$ 
  - (c)  $(n-1)d^5ns^1$
- (d)  $(n-1)d^3ns^2$
- Which of the following ions has the highest magnetic moment 2. [2002]
  - (a)  $Ti^{3+}$
- (b)  $Sc^{3+}$
- (c)  $Mn^{2+}$
- (d)  $Zn^{2+}$
- The atomic number of vanadium (V), chromium (Cr), manganese (Mn) and iron (Fe) are respectively 23, 24, 25 and 26 which one of these may be expected to have the [2003] highest second ionization enthalpy
  - (a) V

- (b) Cr
- (c) Mn
- (d) Fe
- In context with the transition elements, which of the following [2009] statements is incorrect
  - (a) In addition to the normal oxidation states, the zero oxidation state is also shown by these elements in complexes
    - (b) In the highest oxidation states, the transition metal show basic character and form cationic complexes
    - (c) In the highest oxidation states of the first five transition elements (Sc to Mn), all the 4s and 3d electrons are used for bonding
    - (d) Once the  $d^5$  configuration is exceeded, the tendency to involve all the 3d electrons in bonding decreases

- A reduction in atomic size with increase in atomic number is a characteristic of elements of
  - (a) High atomic masses
- (b) d-block
- (c) f-block
- (d) Radioactive series
- Which of the following arrangements does not represent the correct order of the property stated against it
  - (a)  $V^{2+} < Cr^{2+} < Mn^{2+} < Fe^{2+}$  : paramagnetic behaviour
  - (b)  $Ni^{2+} < Co^{2+} < Fe^{2+} < Mn^{2+}$ : ionic size
  - (c)  $Co^{3+} < Fe^{3+} < Cr^{3+} < Sc^{3+}$ : stability in aqueous solution
  - (d) Sc < Ti < Cr < Mn: number of oxidation states
- Four successive members of the first row transition elements 7. are listed below with atomic numbers. Which one of them is expected to have the highest  $E^0_{M^{3+}/M^{2+}}$  value [2013]
  - (a) Cr(Z = 24)
- (b) Mn(Z = 25)
- (c) Fe(Z = 26)
- (d) Co(Z = 27)
- Which pair of compound is expected to show similar colour 8. [2005] in aqueous medium
  - (a) FeCl<sub>2</sub> and CuCl<sub>2</sub>
- (b) VOCl<sub>2</sub> and CuCl<sub>2</sub>
- (c)  $VOCl_2$  and  $FeCl_2$  (d)  $FeCl_2$  and  $MnCl_2$
- The colour of light absorbed by an aqueous solution of [2012] CuSO<sub>4</sub> is
  - (a) Orange-red
- (b) Blue-green
- (c) Yellow
- (d) Violet
- **10.** Cerium (Z = 58) is an important member of the lanthanoids. Which of the following statements about cerium is incorrect

[2004]

- (a) The +4 oxidation state of cerium is not known in solutions
- (b) The +3 oxidation state of cerium is more stable than the +4 oxidation state
- (c) The common oxidation states of cerium are +3 and +4
- (d) Cerium (IV) acts as an oxidizing agent
- 11. Knowing that the chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, which of the following statements is incorrect
  - (a) Because of the large size of the Ln (III) ions the bonding in its compounds is predominantly ionic in character
  - (b) The ionic sizes of Ln (III) decrease in general with increasing atomic number
  - (c) Ln(III) compounds are generally colourless
  - (d) Ln (III) hydroxides are mainly basic in character

12. The actinoids exhibits more number of oxidation states is 18. In context of the lanthanoids, which of the following greater than the lanthanoids. This is because statement is not correct (a) The 5f orbitals are more buried than the 4f orbitals (a) There is a gradual decrease in the radii of the members (b) There is a similarity between 4f and 5f orbitals in their with increasing atomic number in the series angular part of the wave function (b) All the member exhibit +3 oxidation state (c) The actinoids are more reactive than the lanthanoids (c) Because of similar properties the separation of lanthanoids is not easy (d) The 5f orbitals extend further from the nucleus than the 4f orbitals (d) Availability of 4f electrons results in the formation of 13. Identify the incorrect statement among the following [2007] compounds in +4 state for all the members of the series (a) d-block elements show irregular and erratic chemical 19. Arrange  $Ce^{+3}$ ,  $La^{+3}$ ,  $Pm^{+3}$  and  $Yb^{+3}$  in increasing order of properties among themselves their ionic radii (b) La and Lu have partially filled d orbitals and no other (a)  $Yb^{+3} < Pm^{+3} < Ce^{+3} < La^{+3}$ partially filled orbitals (b)  $Ce^{+3} < Yb^{+3} < Pm^{+3} < La^{+3}$ (c) The chemistry of various lanthanoids is very similar (c)  $Yb^{+3} < Pm^{+3} < La^{+3} < Ce^{+3}$ (d) 4f and 5f orbitals are equally shielded (d)  $Pm^{+3} < La^{+3} < Ce^{+3} < Yb^{+3}$ 14. Most common oxidation states of Ce (cerium) are [2002] [2005] **20.** Which of the following is not oxidized by  $O_3$ (a) +2, +3(b) + 2, + 4(c) + 3 + 4(d) + 3 + 5(a) KI (b) FeSO<sub>4</sub> 15. The main reason for larger number of oxidation states (d)  $K_2MnO_4$ (c) KMnO<sub>4</sub> exhibited by the actinoids than the corresponding lanthanoids is 21. Which one of the following dissolve; in hot concentrated NaOH solution [1980] (a) Lesser energy difference between 5f and 6d orbitals than between 4f and 5d orbitals (a) Fe (b) Zn (b) Larger atomic size of actinoids than the lanthanoids (c) Cu (d) Ag (c) More energy difference between 5f and 6d orbitals than 22. Which one of the following oxides is ionic [1995] between 4f and 5d orbitals (a) MnO (b)  $Mn_2O_7$ (d) Greater reactive nature of the actinoids than the lanthanoids (c) CrO<sub>3</sub> (d)  $P_2O_5$ 16. The lanthanide contraction is responsible for the fact that **23.** Which one of the following statements is correct [2003] [2005] (a) Manganese salts give violet borax bead test in the (a) Zr and Y have about the same radius reducing flame (b) Zr and Nb have similar oxidation state (b) From a mixed precipitate of AgCl and AgI ammonia (c) Zr and Hf have about the same radius solution dissolves only AgCl (d) Zr and Zn have the same oxidation sate (c) Ferric ions give a deep green precipitate on adding 17. Which of the following factors may be regarded as the main potassium ferrocyanide solution [2005]

cause of lanthanide contraction

subshell

the subshell

(a) Poor shielding of one of 4f electron by another in the

(b) Effective shielding of one of 4f electrons by another in

(c) Poorer shielding of 5d electrons by 4f electrons

(d) Greater shielding of 5d electron by 4f electrons

- (d) On boiling a solution having  $K^+$ ,  $Ca^{2+}$  and  $HCO_3^-$  ions we get a precipitate of  $K_2Ca(CO_3)_2$
- 24. Which of the following compounds is metallic and ferromagnetic [2016]
  - (a) CrO<sub>2</sub>
- (b) VO2
- (c) MnO<sub>2</sub>
- (d) TiO<sub>2</sub>

| 25.         | Among the following paramagnetic and coloure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the compound man                                                      | both <b>33</b> . | NO <sup>+</sup> rather than Fe <sup>III</sup> | iron and $NO$ exist as $Fe^{II}$ and and $NO$ . These forms can be |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|-----------------------------------------------|--------------------------------------------------------------------|
|             | (a) $K_2Cr_2O_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) $(NH_4)_2(TiCl_6)$                                                |                  | differentiated by                             | [1998]                                                             |
|             | (c) VOSO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $K_3[Cu(CN_4)]$                                                   |                  | (a) Estimating the concer                     |                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 0                | (b) Measuring the concer                      | ntration of CIV                                                    |
| 26.         | The bonds present in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | structure of dichromate ion ar                                        |                  | (c) Measuring the solid s                     |                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90-1700                                                               | [999]            | (d) Thermally decompos                        |                                                                    |
|             | (a) Four equivalent Cr-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                  | Excess of KI reacts v                         | with CuSO <sub>4</sub> solution and then                           |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) bonds and one $O-O$ bond                                            |                  |                                               | ded to it. Which of the statements is                              |
|             | (c) Six equivalent $Cr - C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bonds and one $Cr - Cr$ bords                                         | nd               | incorrect for this reaction                   |                                                                    |
|             | (d) Eight equivalent Cr-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O bonds                                                               |                  | (a) $Na_2S_2O_3$ is oxidised                  | d (b) $CuI_2$ is formed                                            |
|             | (e) Six equivalent $Cr - C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bonds and one $Cr - O - Cr$                                           | bond             | (c) $Cu_2I_2$ is formed                       | (d) Evolved $I_2$ is reduced                                       |
| <b>27</b> . | The purple colour of KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $InO_4$ is due to [2]                                                 | 2015]            |                                               | as a water soluble complex with a                                  |
|             | (a) Charge transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) d-d transition                                                    | 35.              | dilute aqueous solution of                    | of NaCN in the presence of                                         |
|             | (c) f-f transition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (d) d-f transition                                                    |                  |                                               | [2008]                                                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at the last beautiful and the same                                    | ranet            | (a) Nitrogen                                  | (b) Oxygen                                                         |
| 28.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $KMnO_4$ that will be needed to                                       |                  | (c) Carbon dioxide                            | (d) Argon                                                          |
|             | acidic solution is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | le of ferrous oxalate $Fe(C_2O)$                                      | 4) III<br>36     |                                               | ng nitrates will leave behind a metal                              |
|             | acidic solution is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1                                                                    | 199 <b>7</b> ]   | on strong heating                             | [2003]                                                             |
|             | (a) 3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (b) 2/5                                                               |                  | (a) Ferric nitrate                            | (b) Copper nitrate                                                 |
|             | (c) 4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) 1                                                                 |                  | (c) Manganese nitrate                         | (d) Silver nitrate                                                 |
| <b>29</b> . | Iron is rendered passive b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | by the action of                                                      | [982]<br>37.     |                                               | ment of cobalt in the compound                                     |
|             | (a) Conc. $H_2SO_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) Conc. $H_3PO_4$                                                   | <b>37.</b>       | $Hg[Co(SCN)_4]$ is                            | [2004]                                                             |
|             | (c) Conc. HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) Conc. HNO <sub>3</sub>                                            |                  | (1) [2                                        | (b) √8                                                             |
| 30.         | Galvanization is applying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g a coating of                                                        | 2016]            | (a) $\sqrt{3}$                                |                                                                    |
|             | (a) Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (b) Cu                                                                |                  | (c) $\sqrt{15}$                               | (d) $\sqrt{24}$                                                    |
|             | (c) Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) <i>Pb</i>                                                         | 38.              | In the following reactions,                   | ZnO is respectively acting as a/an                                 |
| 31.         | Iron exhibits +2 and -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +3 oxidation states. Which o                                          | of the           | (A) $ZnO + Na_2O \rightarrow Na_2A$           | $ZnO_2$                                                            |
|             | following statements abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       | 2012]            | (B) $ZnO + CO_2 \rightarrow ZnCO$             | ), [2017]                                                          |
|             | (a) Ferrous oxide is more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | basic in nature than the ferric                                       | oxide            | (a) Base and base                             | (b) Acid and acid                                                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are relatively more ionic tha                                         | n the            | (c) Acid and base                             | 3 to 1 to                            |
|             | corresponding ferric of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       | -                |                                               | (d) Base and acid                                                  |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s are less volatile than                                              | the 4.           | NEET/ AIPMT/ CBS                              | E-PMT                                                              |
|             | corresponding ferric o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | 1.               | The catalytic activity of                     | f the transition metals and their                                  |
|             | (d) Ferrous compounds a corresponding ferric corres | are more easily hydrolysed that                                       | in the           | compounds is ascribed to                      | their [2012]                                                       |
| 32          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ons correctly represents che                                          | mical            | (a) Chemical reactivity                       |                                                                    |
| 32.         | relations related to iron a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | 2014]            | (b) Magnetic behaviour                        |                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $H_2SO_4, O_2 \rightarrow Fe_2(SO_4)_3 \xrightarrow{\text{heat}}$     | →F <sub>e</sub>  | (c) Unfilled d-orbitals                       |                                                                    |
|             | (a) 1e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 e <sub>2</sub> (00 <sub>4</sub> ) <sub>3</sub>                      | 71.0             | (d) Ability to adopt m                        | ultiple oxidation states and their                                 |
|             | (b) Fe O2, heat F-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\xrightarrow{\text{dil } H_2 SO_4} FeSO_4 \xrightarrow{\text{heat}}$ | Fe               | complexing ability                            |                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 2.               |                                               | onic species will impart colour to an [1998]                       |
|             | (c) $Fe \xrightarrow{C_{i_2}, \text{ neat}} Fe$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Cl_3 \xrightarrow{\text{heat, air}} FeCl_2 \xrightarrow{Zn}$         | →Fe              | aqueous solution                              | and the second of                                                  |
|             | O. hort                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                  | (a) Ti <sup>4+</sup>                          | (b) <i>Cu</i> <sup>+</sup>                                         |
|             | (d) $Fe \xrightarrow{O_2, \text{ near}} Fe_3O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $CO,600^{\circ}C \rightarrow FeO \xrightarrow{CO,700^{\circ}C}$       | →Fe              | (c) $Zn^{2+}$                                 | (d) $Cr^{3+}$                                                      |

Which of the following pairs are both the ions coloured in aqueous solution [2006; 2010] (a)  $Sc^{3+}$ ,  $Co^{2+}$ (b) Ni<sup>2+</sup>, Cu<sup>+</sup> (c)  $Ni^{2+}$ ,  $Ti^{3+}$ (d)  $Sc^{3+} Ti^{3+}$ (At. no. : Sc = 21, Ti = 22, Ni = 28, Cu = 29, Co = 27) Among the following series of transition metal ions, the one in which all metals ions have  $3d^2$  electronic configuration is (a)  $Ti^{4+}$ ,  $V^{3+}$ ,  $Cr^{2+}$ ,  $Mn^{3+}$  (b)  $Ti^{2+}$ ,  $V^{3+}$ ,  $Cr^{4+}$ ,  $Mn^{5+}$ (c)  $Ti^{3+}$ ,  $V^{2+}$ ,  $Cr^{3+}$ ,  $Mn^{4+}$  (d)  $Ti^+$ ,  $V^{4+}$ ,  $Cr^{6+}$ ,  $Mn^{7+}$ Which one of the following has maximum number of unpaired electrons [1996; 1999] (a)  $Mg^{2+}$ (b)  $Ti^{3+}$ (c)  $V^{3+}$ (d)  $Fe^{2+}$ Which one of the following ions has electronic configuration  $[Ar]3d^6$ [2010](a)  $Co^{3+}$ (b)  $Ni^{3+}$ (c)  $Mn^{3+}$ (d)  $Fe^{3+}$ (At. nos. Mn = 25, Fe = 26, Co = 27, Ni = 28) Magnetic moment 2.83 BM is given by which of the following ions (At. nos. Ti = 22, Cr = 24, Mn = 25, Ni = 28) [2014; 2015] (a) Cr3+ (b) Mn2+ (d) Ni<sup>2+</sup> (c) Ti3+ 8. Which is the correct order of increasing energy of the listed [2015] orbitals in the atom of titanium (b) 4s 3s 3p 3d (a) 3s 4s 3p 3d (d) 3s 3p 4s 3d (c) 3s 3p 3d 4s Which one of the following characteristics of the transition [2003] metals is associated with their catalytic activity (a) Variable oxidation states (b) High enthalpy of atomization (c) Paramagnetic behaviour (d) Colour of hydrated ions 10. Four successive members of the first row transition elements are listed below with their atomic numbers. Which one of them is expected to have the highest third ionization enthalpy [2005]

(b) Chromium (Z = 24)

(d) Manganese (Z = 25)

(a) Vanadium (Z = 23)

(c) Iron (Z = 26)

- 11. Which of the following statements about the interstitial compounds is incorrect [2013] (a) They have higher melting points than the pure metal (b) They retain metallic conductivity (c) They are chemically reactive (d) They are much harder than the pure metal 12. Which of the following ions is the most stable in aqueous solution [2007] (a)  $Cr^{3+}$ (b)  $V^{3+}$ (d) Mn3+ (c) Ti<sup>3+</sup> (At. no.  $Ti = 22 \ V = 23$ , Cr = 24, Mn = 25) **13**. For the four successive transition elements (Cr, Mn, Fe and Co), the stability of +2 oxidation state will be there in which of the following order [2011] (a) Cr > Mn > Co > Fe (b) Mn > Fe > Cr > Co(c) Fe > Mn > Co > Cr (d) Co > Mn > Fe > Cr(At. no. Cr = 24, Mn = 25, Fe = 26, Co = 27) 14. Which one of the following does not correctly represent the correct order of the property indicated against it [2008; 2012] (b)  $Ti^{3+} < V^{3+} < Cr^{3+} < Mn^{3+}$ : increasing moment (c) Ti < V < Cr < Mn; increasing melting points
  - (a) Ti < V < Cr < Mn; increasing number of oxidation states
    - magnetic
    - (d) Ti < V < Mn < Cr; increasing  $2^{nd}$  ionization enthalpy
  - 15. The pair of compounds that can exist together is [2014]
    - (a) FeCl<sub>2</sub>, SnCl<sub>2</sub>
- (b) FeCl3, KI
- (c) FeCl<sub>3</sub>, SnCl<sub>2</sub>
- (d) HgCl2, SnCl2
- 16. Which of the following pairs has the same size
  - (a)  $Zn^{2+}$ ,  $Hf^{4+}$
- (b)  $Fe^{2+}$   $Ni^{2+}$
- (c)  $Zr^{4+}$ ,  $Ti^{4+}$
- (d) Zr4+, Hf4+
- 17. Mercury is the only metal which is liquid at  $0^{\circ}C$  . This is due
  - (a) Very high ionisation energy and weak metallic bond
  - (b) Low ionisation potential
  - (c) High atomic weight
  - (d) High vapour pressure

[2010]

| 18.  | Lanthanoids     | are |
|------|-----------------|-----|
| 0.00 | -antificitionus | are |

[2004]

- (a) 14 elements in the sixth period (atomic no. = 58 to 71) that are filling 4f sublevel
- (b) 14 elements in the seventh period (atomic no. = 58 to 71) that are filling 4f sublevel
- (c) 14 elements in the sixth period (atomic no. = 90 to 103) that are filling 4f sublevel
- (d) 14 elements in the seventh period (atomic no. = 90 to 103) that are filling 4f sublevel
- 19. Which of the following oxidation states is the most common among the lanthanoids [2010]
  - (a) 4

(b) 2

(c) 5

- (d)3
- 20. Identify the incorrect statement among the following [2007]
  - (a) There is decrease in the radii of atoms or ion as one proceeds from La to Lu
  - (b) Lanthanoid contraction is the accumulation of successive shrinkages
  - (c) As a result of lanthanide contraction, the properties of the 4th series of the contraction element have no similarities with the 5d series of elements
  - (d) Shielding power of 4f element of electron is quite weak
- 21. Reason of lanthanoid contraction is

[2014]

- (a) Decreasing nuclear charge
- (b) Decreasing screening effect
- (c) Negligible screening effect of 'f' orbitals
- (d) Increasing nuclear charge
- 22. Because of lanthanoid contraction, which of the following pairs of elements have nearly same atomic radii [2015]
  - (a) Zr(40) and Nb(41)
- (b) Zr(40) and Hf(72)
- (c) Zr(40) and Ta(73)
- (d) Ti(22) and Zr(40)
- 23. Which of the following exhibits only +3 oxidation state

[2012]

[2013]

(a) U

(b) Th

(c) Ac

- (d) Pa
- 24. Which of the following lanthanoid ions is diamagnetic

(At. no. 
$$Ce = 58$$
,  $Sm = 62$ ,  $Eu = 63$ ,  $Yb = 70$ )

- (a) Yb2+
- (b) Ce2+
- (c)  $Sm^{2+}$
- (d) Eu<sup>2+</sup>

- 25. Which one of the following statements related to lanthanons is incorrect [2016]
  - (a) All the lanthanons are much more reactive than aluminium
  - (b) Ce(+4) solutions are widely used as oxidizing agent in volumetric analysis
  - (c) Europium shows +2 oxidation state
  - (d) The basicity decreases as the ionic radius decreases from Pr to Lu
- 26. The electronic configurations of Eu(Atomic No 63). Gd(Atomic No 64) and Tb (Atomic No. 65) are [2016]
  - (a)  $[Xe]4f^76s^2$ ,  $[Xe]4f^86s^2$  and  $[Xe]4f^85d^16s^2$
  - (b)  $[Xe]4f^75d^16s^2$ ,  $[Xe]4f^75d^16s^2$  and  $[Xe]4f^96s^2$
  - (c)  $[Xe]4f^65d^16s^2$ .  $[Xe]4f^75d^16s^2$  and  $[Xe]4[f^85d^16s^2]$
  - (d)  $[Xe]4f^76s^2$ ,  $[Xe]4f^75d^16s^2$  and  $[Xe]4f^96s^2$
- **27.** The correct order of ionic radii of  $Y^{3+}$ ,  $La^{3+}$ ,  $Eu^{3+}$  and  $Lu^{3+}$  is [2003]
  - (a)  $La^{3+} < Eu^{3+} < Lu^{3+} < Y^{3+}$
  - (b)  $Y^{3+} < La^{3+} < Eu^{3+} < Lu^{3+}$
  - (c)  $Lu^{3+} < Y^{3+} < Eu^{3+} < La^{3+}$
  - (d)  $Lu^{3+} < Eu^{3+} < La^{3+} < Y^{3+}$

(Atomic no. Y = 39, La = 57, Eu = 63, Lu = 71)

- 28. The reason for greater range of oxidation states in actinoids is attributed to [2017]
  - (a) The radioactive nature of actinoids
  - (b) Actinoid contraction
  - (c) 5f, 6d and 7s levels having comparable energies
  - (d) 4f and 5d levels being close in energies
- **29.** Amongst  $TiF_6^{2-}$ ,  $CoF_6^{3-}$ ,  $Cu_2Cl_2$  and  $NiCl_4^{2-}$ number Ti = 22, Co = 27, Cu = 29, Ni = 28). The [1995, 2009] colourless species are
  - (a)  $CoF_6^{3-}$  and  $NiCl_4^{2-}$
- (b)  $TiF_6^{2-}$  and  $CoF_6^{3-}$ 
  - (c)  $Cu_2Cl_2$  and  $NiCl_4^{2-}$  (d)  $TiF_6^{2-}$  and  $Cu_2Cl_2$
- **30.** Reaction between the following pairs will produce  $H_2$  except [1998]
  - (a) Na + ethyl alcohol
- (b) Fe + steam
- (c)  $Fe + H_2SO_4(aq)$
- (d) Cu + HCl (aq.)

| 31.      | Which of the following pairs of metals is purified by van Arkel method [2011]             | 38.   |                                           | zation, same moles of whi<br>will require the least an |                              |
|----------|-------------------------------------------------------------------------------------------|-------|-------------------------------------------|--------------------------------------------------------|------------------------------|
|          | (a) Ni and Fe (b) Ga and In                                                               |       | acidified KMnO <sub>4</sub> for con       | nplete oxidation                                       | [2015]                       |
|          | (c) Zr and Ti (d) Ag and Au                                                               |       | (a) FeSO <sub>4</sub>                     | (b) $FeSO_3$                                           |                              |
| 32.      | 2 2 7 Termion tame green when Trageog is                                                  |       | (c) $FeC_2O_4$                            | (d) $Fe(NO_2)_2$                                       |                              |
|          | added to it. This is due to the formation of [2011]  (a) $CrSO_4$ (b) $Cr_2(SO_4)_3$      | 39.   | The most convenient me of iron is         | thod to protect bottom of s                            | hip made<br>[ <b>2001</b> ]  |
|          | (c) $CrO_4^{2-}$ (d) $Cr_2(SO_3)_3$                                                       |       | (a) White tin plating                     |                                                        |                              |
| 33.      |                                                                                           |       | (b) Coating with red lead                 | l oxide                                                |                              |
| <b>.</b> | passed through acidified $K_2Cr_2O_7$ solution [2016]                                     |       | (c) Connecting with 'Pb'                  | block                                                  |                              |
|          | (a) The solution turns blue                                                               |       | (d) Connecting with 'Mg                   | block                                                  |                              |
|          | (b) The solution is decolourized                                                          | 40.   | To protect iron against plating on it, is | corrosion, the most dural                              | ole metal<br>[ <b>1994</b> ] |
|          | (c) SO <sub>2</sub> is reduced                                                            |       | (a) Nickel plating                        | (b) Tin plating                                        |                              |
|          | (d) Green $Cr_2(SO_4)_3$ is formed                                                        |       | (c) Copper plating                        | (d) Zinc plating                                       |                              |
| 34.      | Which of the statements is <b>not</b> true [2012]                                         | 41.   | A blue colouration is not                 |                                                        | [1989]                       |
|          | (a) On passing $H_2S$ through acidified $K_2Cr_2O_7$ solution, a milky colour is observed |       | (a) Ammonium hydroxid                     | e dissolves in copper sulpl                            |                              |
|          | (b) $Na_2Cr_2O_7$ is preferred over $K_2Cr_2O_7$ in volumetric                            |       |                                           | tion reacts with $K_4[Fe(CN)]$                         | <b>V</b> )6]                 |
|          | analysis                                                                                  |       |                                           | with sodium ferrocyanide                               |                              |
|          | (c) $K_2Cr_2O_7$ solution in acidic medium is orange                                      | 13.00 | (d) Anhydrous CuSO <sub>4</sub> is        |                                                        |                              |
|          | (d) $K_2Cr_2O_7$ solution becomes yellow on increasing the pH                             | 42.   | When copper is heated w                   | with conc. $HNO_3$ it produce                          |                              |
| 7        | beyond 7                                                                                  |       |                                           |                                                        | [2016]                       |
| 35.      | Which of the following does not give oxygen on heating [2013]                             |       | (a) $Cu(NO_3)_2$ and $NO_2$               |                                                        |                              |
|          | (a) $(NH_4)_2 Cr_2 O_7$ (b) $KCIO_3$                                                      |       | (b) $Cu(NO_3)_2$ and $NO$                 |                                                        |                              |
|          | 472 2 7                                                                                   |       | (c) $Cu(NO_3)_2$ , $NO$ and $N$           | $O_2$                                                  |                              |
|          | (c) $Zn(CIO_3)_2$ (d) $K_2Cr_2O_7$                                                        |       | (d) $Cu(NO_3)_2$ and $N_2O$               |                                                        |                              |
| 36.      | $KMnO_4$ can be prepared from $K_2MnO_4$ as per the reaction                              | 43.   | Copper sulphate solution                  | reacts with KCN to give                                |                              |
|          | $3MnO_4^{2-} + 2H_2O \Longrightarrow 2MnO_4^{-} + MnO_2 + 4OH^{-}$                        |       |                                           | [2                                                     | 002, 06]                     |
|          | The reaction can go to completion by removing $OH^-$ ions by                              |       | (a) $Cu(CN)_2$                            | (b) CuCN                                               |                              |
|          | addings [2013]                                                                            |       | (c) $K_2[Cu(CN)_4]$                       | (d) $K_3[Cu(CN)_4]$                                    |                              |
|          | (a) $SO_2$ (b) $HCl$                                                                      | 44.   | Percentage of silver in Ge                | erman silver is                                        | [2000]                       |
|          | (c) KOH (d) CO <sub>2</sub>                                                               |       | (a) 0%                                    | (b) 1%                                                 |                              |
|          |                                                                                           |       | (c) 5%                                    | (d) None of these                                      |                              |
| 37.      | The reaction of aqueous $KMnO_4$ with $H_2O_2$ in acidic conditions gives [2014]          | 45.   |                                           | metal is obtained by leac<br>of NaCN and then precipit |                              |
|          | (a) $Mn^{2+}$ and $O_3$ (b) $Mn^{4+}$ and $MnO_2$                                         |       | metal by addition of zinc                 |                                                        | [1989]                       |
|          | (c) $Mn^{4+}$ and $O_2$ (d) $Mn^{2+}$ and $O_2$                                           |       | (a) Copper                                | (b) Silver                                             |                              |
|          |                                                                                           |       | (c) Nickel                                | (d) Iron                                               |                              |

| <b>46.</b> Parke's process is used to extract  (a) Silver using <i>NaCN</i>                                                                      | 992] 5.       | Which one of the following was built to use charcoal a but later switched over to | as a source of power, to sta | eel plant<br>art with,<br>[2004] |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------|------------------------------|----------------------------------|
| (b) Copper using CuFeS <sub>2</sub>                                                                                                              |               | (a) The Tata Iron and Stee                                                        |                              | 1-004                            |
| (c) Silver from argentiferrous lead                                                                                                              |               | (b) The Indian Iron and S                                                         |                              |                                  |
| (d) Silver by forming amalgam                                                                                                                    |               | (c) Mysore Iron and Steel                                                         | Limited                      |                                  |
| <b>47.</b> German silver is an alloy of [1980; 20]                                                                                               | 000]          | (d) Hindustan Steel Limite                                                        | ed                           |                                  |
| <ul><li>(a) Copper, zinc and nickel</li><li>(b) Copper and silver</li><li>(c) Copper, zinc and tin</li><li>(d) Copper, zinc and silver</li></ul> | 6.            | The basic character of the the order                                              | transition metal monoxide    | s follows<br>[ <b>2007</b> ]     |
| <b>48.</b> Zn gives hydrogen gas with $H_2SO_4$ and $HCI$ but not                                                                                | with          | (a) $TiO > VO > CrO > Fe$                                                         | O                            |                                  |
|                                                                                                                                                  | 002]          | (b) VO > CrO > TiO > Fe                                                           | О                            |                                  |
| (a) NOT is reduced in our face of the Other                                                                                                      |               | (c) CrO > VO > FeO > Ti                                                           | O                            |                                  |
| (a) $NO_3^-$ is reduced in preference to $H_3O^+$                                                                                                |               | (d) $TiO > FeO > VO > Cr$                                                         | О                            |                                  |
| (b) $HNO_3$ is weaker acid than $H_2SO_4$ and $HCI$                                                                                              |               | (Atomic no. $Ti = 22$ , $V =$                                                     |                              |                                  |
| (c) $Zn$ acts as oxidising agent when reacts with $HNO_3$<br>(d) In electrochemical series $Zn$ is placed above                                  | <b>7</b> .    | Among the following pairs in aqueous solution is mor                              | s of ions, the lower oxidat  |                                  |
| hydrogen                                                                                                                                         |               | in aqueous solution is in-                                                        |                              | [2005]                           |
| 49. When calomel react with NH <sub>4</sub> OH solution the composition formed is [19]                                                           | ound<br>96;]  | (a) $Tl^+, Tl^{3+}$                                                               | (b) $Cu^+, Cu^{2+}$          | ,                                |
| (a) $NH_2 - Hg - Cl$ (b) $Hg_2Cl_2NH_3$                                                                                                          |               | (c) $Cr^{2+}$ , $Cr^{3+}$                                                         | (d) $V^{2+}$ , $VO^{2+}$     |                                  |
| (c) $Hg(NH_3)_2Cl_2$ (d) $HgCl_2NH_3$                                                                                                            | 8.            | Which of the following doe                                                        | es not have valence electr   | on in <i>3d</i> -                |
| <b>50.</b> Name the gas that can readily decolourise acidified <i>KMr</i>                                                                        |               | subshell                                                                          |                              | [2002]                           |
|                                                                                                                                                  | 01 <b>7</b> ] | (a) Fe (III)                                                                      | (b) Mn (II)                  |                                  |
| (a) CO <sub>2</sub> (b) SO <sub>2</sub>                                                                                                          |               | (c) Cr (I)                                                                        | (d) P (0)                    |                                  |
| (c) $NO_2$ (d) $P_2O_5$                                                                                                                          | 9.            | Lanthanide for which + common is                                                  | II and +III oxidation s      | tates are<br>[2003]              |
| 5. AIIMS                                                                                                                                         |               | (a) La                                                                            | (b) Nd                       |                                  |
| Highest (+7) oxidation state is shown by                                                                                                         | 999]          | (c) Ce                                                                            | (d) Eu                       |                                  |
| (a) Co (b) Cr                                                                                                                                    |               | Which metal is present in                                                         |                              | n cilver                         |
| (c) V (d) Mn                                                                                                                                     |               | winer metal is present in                                                         | orass, oronze and Germa      |                                  |
|                                                                                                                                                  | 983]          | (a) <i>Zn</i>                                                                     | (b) <i>Mg</i>                | [1999]                           |
|                                                                                                                                                  |               | (c) Cu                                                                            | (d) AI                       |                                  |
|                                                                                                                                                  | te is 11.     | Which of the following con                                                        | mpounds is coloured          | [2008]                           |
| The general electronic configuration of transition elemen  120                                                                                   | 001]          | (a) TiCl <sub>3</sub>                                                             | (b) FeCl <sub>3</sub>        |                                  |
| (a) $(n-1)d^{1-5}$ (b) $(n-1)d^{1-10}ns^1$                                                                                                       | ,             |                                                                                   |                              |                                  |
|                                                                                                                                                  |               | (c) CoCl <sub>2</sub>                                                             | (d) All of these             |                                  |
| (c) $(n-1)d^{1-10}ns^{1-2}$ (d) $ns^2(n-1)d^{10}$                                                                                                |               | $F_{2}$ is the formed by react                                                    | ing $K_2MnF_6$ with          | [2005]                           |
| <ul> <li>Which of the following electronic configuration is that of<br/>transitional element</li> <li>[20]</li> </ul>                            | 000]          | (a) $SbF_5$                                                                       | (b) <i>MnF</i> <sub>3</sub>  |                                  |
| (a) $1s^2, 2s^2p^6, 3s^2p^6d^{10}, 4s^2p^6$                                                                                                      |               | (c) KSbF <sub>6</sub>                                                             | (d) $MnF_4$                  |                                  |
| (b) $1s^2, 2s^2p^6, 3s^2p^6d^{10}, 4s^2p^1$                                                                                                      | 13.           | Bessemer converter is use                                                         | d for                        | [2015]                           |
| (c) $1s^2, 2s^2p^6, 3s^2p^6d^2, 4s^2$                                                                                                            |               | (a) Steel                                                                         | (b) Wrought iron             |                                  |
| (d) $1s^2, 2s^2p^6, 3s^2p^6, 4s^2$                                                                                                               |               | (c) Pig iron                                                                      | (d) Cast iron                |                                  |

- 14. On adding excess of  $NH_3$  solution to  $CuSO_4$  solution, the dark blue colour is due to
  - (a)  $[Cu(NH_3)_4]^{++}$
- (b)  $[Cu(NH_3)_2]^{++}$
- (c)  $[Cu(NH_3)]^+$
- (d) None of the above
- 15. Impurities of lead in silver are removed by
  - (a) Parke's process
- (b) Solvay process
- (c) Cyanide process
- (d) Amalgamation process
- 16. Which of the following does not react with AgCl [1997]
  - (a) NaNO<sub>3</sub>
- (b) Na<sub>2</sub>CO<sub>3</sub>
- (c)  $Na_2S_2O_3$
- (d) NH<sub>4</sub>OH
- 17. Lucas reagent is

[1980, 82]

[1987]

- (a) Anhydrous ZnCl<sub>2</sub> + conc. HCl
- (b) Hydrous ZnCl2 + dil. HCl
- (c) Conc. HNO<sub>3</sub> + anhydrous ZnCl<sub>2</sub>
- (d) Conc. HNO<sub>3</sub> + anhydrous MgCl<sub>2</sub>
- 18. The compound insoluble in water is

[2004]

- (a) Mercurous nitrate
- (b) Mercuric nitrate
- (c) Mercurous chloride
- (d) Mercurous perchlorate

## **Assertion and Reason**

Read the assertion and reason carefully to mark the correct option out of the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion

Cuprous ion (Cu+) has unpaired electrons

while cupric ion (Cu++) does not.

Reason

Cuprous ion (Cu+) is colourless where as

cupric ion  $(Cu^{++})$  is blue in the aqueous

solution.

[AIIMS 2002]

2. Assertion Cobalt-60 is useful in cancer therapy.

Reason

Cobalt-60 is source of  $\gamma$ -radiations

capable of killing cancerous cell.

[AIIMS 2006]

3. Assertion Transition metals show variable valency.

Reason

Due to a large energy difference between

the  $ns^2$  and (n-1)d electrons.

[AIIMS 1996]

Assertion

The aqueous solution of  $FeCl_3$  is basic in

Reason

FeCl<sub>3</sub> hydrolyses in water.

[AIIMS 1998]

5. Assertion AgCl dissolves in NH4OH solution.

Reason

Due to formation of a complex.

[AIIMS 1998]

Assertion

Pure iron is not used for making tools and

machines.

Reason

Pure iron is hard.

[AIIMS 1998]

7. Assertion Solution of Na<sub>2</sub>CrO<sub>4</sub> in water is intensely

coloured.

Reason

Oxidation state of Cr in Na2CrO4 is

[AIIMS 2003]

8. Assertion Copper metal gets readily corroded in an

acidic aqueous solution.

Reason

Free energy change for this process is [AIIMS 2004]

positive.

Assertion

The free gaseous Cr atom has six

unpaired electrons.

Reason

Half filled 's' orbital has greater stability.

[AIIMS 2004]

10. Assertion

Mercury vapour is shining silvery in

appearance.

Reason

Mercury is a metal with shining silvery

appearance.

[AIIMS 2007]

11. Assertion

Reason

Extraction of iron metal from iron oxide

ore is carried out by heating with coke. The reaction  $Fe_2O_3(s) \rightarrow Fe(s) + \frac{3}{2}O_2(g)$ 

is a spontaneous process. [AIIMS 2005]

## 25. d- and f - Block Elements - Answers Keys

| 1  | c | 2  | b | 3  | d | 4  | С | 5  | C |
|----|---|----|---|----|---|----|---|----|---|
| 6  | b | 7  | c | 8  | a | 9  | b | 10 | a |
| 11 | b | 12 | a | 13 | a | 14 | b | 15 | d |
| 16 | a | 17 | С | 18 | b | 19 | b | 20 | b |
| 21 | a | 22 | a | 23 | b | 24 | d | 25 | a |
| 26 | С | 27 | d | 28 | d | 29 | b | 30 | d |
| 31 | a | 32 | d | 33 | a | 34 | a | 35 | c |
| 36 | d | 37 | a | 38 | С | 39 | d | 40 | a |
| 41 | a | 42 | d | 43 | b | 44 | a | 45 | c |
| 46 | b | 47 | b | 48 | d | 49 | С | 50 | c |
| 51 | b | 52 | d | 53 | С | 54 | a | 55 | b |
| 56 | a | 57 | d | 58 | d | 59 | d | 60 | а |
| 61 | a | 62 | С | 63 | ь | 64 | a | 65 | c |
| 66 | d | 67 | С | 68 | b | 69 | d |    |   |

| 1   | a  | 2   | b | 3   | d | 4   | a | 5   | b |
|-----|----|-----|---|-----|---|-----|---|-----|---|
| 6   | a  | 7   | b | 8   | a | 9   | a | 10  | b |
| 11  | a  | 12  | С | 13  | a | 14  | b | 15  | d |
| 16  | a  | 17  | d | 18  | d | 19  | b | 20  | d |
| 21  | С  | 22  | С | 23  | С | 24  | С | 25  | d |
| 26  | d  | 27  | d | 28  | С | 29  | a | 30  | a |
| 31  | a  | 32  | С | 33  | d | 34  | С | 35  | c |
| 36  | b  | 37  | a | 38  | b | 39  | d | 40  | a |
| 41  | bd | 42  | С | 43  | С | 44  | b | 45  | a |
| 46  | a  | 47  | a | 48  | a | 49  | a | 50  | d |
| 51  | С  | 52  | b | 53  | a | 54  | a | 55  | d |
| 56  | a  | 57  | С | 58  | b | 59  | a | 60  | d |
| 61  | a  | 62  | С | 63  | b | 64  | a | 65  | С |
| 66  | С  | 67  | b | 68  | С | 69  | b | 70  | b |
| 71  | С  | 72  | d | 73  | b | 74  | b | 75  | a |
| 76  | ь  | 77  | С | 78  | С | 79  | С | 80  | b |
| 81  | С  | 82  | a | 83  | С | 84  | С | 85  | a |
| 86  | a  | 87  | a | 88  | ь | 89  | a | 90  | С |
| 91  | a  | 92  | b | 93  | a | 94  | a | 95  | С |
| 96  | b  | 97  | d | 98  | b | 99  | d | 100 | b |
| 101 | d  | 102 | d | 103 | d | 104 | a | 105 | a |

| 106    | a    | 107    | d       | 108  | a   | 109  | a        | 110  | a |
|--------|------|--------|---------|------|-----|------|----------|------|---|
| 111    | a    | 112    | b       | 113  | a   | 114  | b        | 115  | d |
| 116    | С    | 117    | b       | 118  | С   | 119  | d        | 120  | d |
| 121    | b    | 122    | С       | 123  | b   | 124  | a        | 125  | b |
| 126    | a    | 127    | d       | 128  | С   | 129  | d        | 130  | d |
| 131    | b    |        | al supe |      |     |      |          |      |   |
| 3. 117 | Γ-JE | E/ AIE | EE      |      |     |      |          | 4 11 |   |
| 1      | a    | 2      | С       | 3    | b   | 4    | ь        | 5    | c |
| 6      | a    | 7      | d       | 8    | Ь   | 9    | a        | 10   | a |
| 11     | С    | 12     | d       | 13   | d   | 14   | С        | 15   | а |
| 16     | С    | 17     | С       | 18   | d   | 19   | a        | 20   | ( |
| 21     | ь    | 22     | a       | 23   | b   | 24   | a        | 25   | ( |
| 26     | е    | 27     | a       | 28   | a   | 29   | d        | 30   | ( |
| 31     | d    | 32     | d       | 33   | С   | 34   | b        | 35   | ł |
| 36     | d    | 37     | С       | 38   | С   |      | 202, 153 |      |   |
| 4. NI  | EET/ | AIPM   | IT/ C   | BSE- | РМТ | 68.0 |          |      |   |
| 1      | d    | 2      | d       | 3    | С   | 4    | b        | 5    | ( |
| 6      | a    | 7      | d       | 8    | d   | 9    | a        | 10   | ( |
| 11     | С    | 12     | a       | 13   | b   | 14   | С        | 15   | ć |
| 16     | d    | 17     | a       | 18   | a   | 19   | d        | 20   | ( |
| 21     | С    | 22     | b       | 23   | С   | 24   | a        | 25   | â |
| 26     | d    | 27     | С       | 28   | С   | 29   | d        | 30   | ( |
| 31     | С    | 32     | ь       | 33   | d   | 34   | b        | 35   | ā |
| 36     | d    | 37     | d       | 38   | a   | 39   | a        | 40   | ( |
| 41     | b    | 42     | a       | 43   | d   | 44   | a        | 45   | t |
| 46     | С    | 47     | a       | 48   | a   | 49   | a        | 50   | ł |
| 5. A   | IIMS |        |         |      |     |      |          |      |   |
| 1      | d    | 2      | С       | 3    | С   | 4    | С        | 5    | ā |
| 6      | a    | 7      | a       | 8    | d   | 9    | a        | 10   | ( |
| 11     | d    | 12     | a       | 13   | С   | 14   | a        | 15   | i |
| 16     | a    | 17     | a       | 18   | С   |      |          |      |   |
| 6. A   | sser | tion 8 | Re      | ason |     |      |          |      |   |
| 1      | e    | 2      | a       | 3    | С   | 4    | e        | 5    | a |
| 6      | С    | 7      | a       | 8    | d   | 9    | С        | 10   | d |
| 11     | d    |        |         |      |     |      |          |      |   |