Aldehydes and Ketones - Multiple Choice Questions

1. Introduction

- 1. Glyoxal is
 - (a) $CH_2O CH_2O$
- (b) CH₂OH
 - CH₂OH

- (c) CHO CHO
- (d) CH₂OH CHO
- **2.** Which factor/s will increase the reactivity of >C=O group
 - (i) Presence of a group with positive inductive effect
 - (ii) Presence of a group with negative inductive effect
 - (iii) Presence of large alkyl group
 - (a) Only (i)
- (b) Only (ii)
- (c) (i) and (iii)
- (d) (ii) and (iii)
- 3. Which of the aldehyde is most reactive
 - (a) C_6H_5-CHO
- (b) CH₃CHO
- (c) HCHO
- (d) All the equally reactive
- The order of susceptibility of nucleophilic attack on aldehydes follows the order
 - (a) $1^{\circ} > 3^{\circ} > 2^{\circ}$
- (b) $1^{\circ} > 2^{\circ} > 3^{\circ}$
- (c) $3^{\circ} > 2^{\circ} > 1^{\circ}$
- (d) $2^{\circ} > 3^{\circ} > 1^{\circ}$
- Arrange the following compounds in increasing order of their reactivity in nucleophilic addition reactions

Ethanal (I), Propanal (II), Propanone (III), Butanone (IV)

- (a) III < II < IV
- (b) II<I<III<IV
- (c) IV<III<II<I
- (d) I < II < III < IV
- 6. Which of the following is called Bayer's reagent
 - (a) Alk KMnO₄
- (b) Acidic KMnO₄
- (c) K_2HgI_4
- (d) Red P/HF
- 7. Fehling A and Fehling B are
 - (a) $CuSO_4$ solution and NH_4OH solution
 - (b) CuSO₄ solution and alkaline solution of sodium potassium tartarate
 - (c) CuSO₄ solution and alkaline solution of sodium citrate
 - (d) CuSO₄ solution and NaOH
- **8.** The correct order of reactivity of aldehydes and ketones towards hydrogen cyanide is
 - (a) CH₃COCH₃ > CH₃CHO > HCHO
 - (b) CH3COCH3 > HCHO > CH3CHO
 - (c) CH₃CHO > CH₃COCH₃ > HCHO
 - (d) HCHO > CH₃CHO > CH₃COCH₃

- Which of the following compounds is most reactive towards nucleophilic addition reaction
 - 0 || (a) *CH*₃ - *C* - *H*
- (b) $CH_3 C CH_3$
- (c) O | C-H
- d) $C-CH_3$

2. Preparation of Aldehydes and Ketones

1. $CH_3COCI \xrightarrow{2H} CH_3CHO + HCI$;

The above reaction is called

- (a) Reimer-Tiemann reaction
- (b) Cannizzaro reaction
- (c) Rosenmund reaction
- (d) Reformatsky reaction
- 2. $CH_3 CH_2 C \equiv CH \xrightarrow{R} Butanone, R$ is
 - (a) Hg++
- (b) KMnO₄
- (c) KCIO₃
- (d) $K_2Cr_2O_7$
- 3. The oxidation of benzyl chloride with lead nitrate gives
 - (a) Benzyl alcohol
- (b) Benzoic acid
- (c) Benzaldehyde
- (d) p-chlorobenzaldehyde
- **4.** $R CH = CH_2 + CO + H_2 \xrightarrow{\text{high Temp}} RCH_2CH_2CHO$

The above reaction is

- (a) Mendius reaction
- (b) Oxo process
- (c) Sandorn's reaction
- (d) Stephen's reaction
- 5. The reagent used in Gatterman Koch aldehyde synthesis is
 - (a) Pb/BaSO₄
- (b) Alkaline KMnO₄
- (c) Acidic KMnO₄
- (d) CO+HCI
- **6.** CH_3 On reductive ozonolysis yields
 - (a) 6-oxoheptanal
- (b) 6-oxoheptanoic acid
- (c) 6-hydroxyheptanal
- (d) 3-hydroxypentanal

7. In the following reaction

$$C_2H_2 \xrightarrow{H_2O} X \rightleftharpoons CH_3CHO$$
 What is X

- (a) CH₃CH₂OH
- (b) $CH_3 O CH_3$
- (c) CH₃CH₂CHO
- (d) $CH_2 = CHOH$
- **8.** An optically active compound having molecular formula C_8H_{16} on ozonolysis gives acetone as one of the products. The structure of the compound is

(c)
$$H_3CH_2C$$
 $C=C$ CH_3 $C=C$ CH_3 CH_3C CH_3

(d)
$$H_3C$$
 $C=C$ CH_2CH_3 CH_3 CH_3

9. $R - C = N + 2(H) \xrightarrow{\text{(i) SnCl}_2 / \text{dil HCl}} RCHO + NH_4Cl$ this

reaction is known as

- (a) Etard reaction
- (b) Stephen reaction
- (c) Hell-Vohlard- Zelinsky reaction
- (d) Balz-Schiemann reaction
- 10. Addition of water to alkynes occurs in acidic medium and in the presence of Hg^{2+} ions as a catalyst. Which of the following products will be formed on addition of water to but-1-yne under these conditions

(a)
$$CH_3 - CH_2 - CH_2 - C - H$$

(b)
$$CH_3 - CH_2 - C - CH_3$$

(c)
$$CH_3 - CH_2 - C - OH + CO_2$$

O O
$$\parallel$$
 \parallel \parallel \parallel (d) $CH_3-C-OH+H-C-H$

11.
$$CH_3 - C \equiv CH \xrightarrow{40\% H_2 SO_4} A \xrightarrow{\text{Isomerisation}}$$

$$CH_3 - C - CH_3$$

Structure of 'A' and type of isomerism in the above reaction are respectively

- (a) Prop 1 en 2 ol, metamerism
- (b) Prop 1 en 1 ol, tautomerism
- (c) Prop 2 en 2 ol, geometrical isomerism
- (d) Prop 1 en 2 ol, tautomerism
- 12. The end product in the following sequence of reaction is

$$HC \equiv CH \xrightarrow{1\% HgSO_4} A \xrightarrow{CH_3MgX} B \xrightarrow{[O]}$$

- (a) Acetic acid
- (b) Isopropyl alcohol
- (c) Acetone
- (d) Ethanol
- **13.** Identify the product C in the series

$$CH_3CN \xrightarrow{Na/C_2H_5OH} A \xrightarrow{HNO_2} B \xrightarrow{Cu/573K} C$$

- (a) CH₃COOH
- (b) CH3CH2NHOH
- (c) CH₃CONH₂
- (d) CH₃CHO
- **14.** On heating calcium acetate and calcium formate, the product formed is
 - (a) CH₃COCH₃
- (b) CH₃CHO
- (c) HCHO + CaCO₃
- (d) CH₃CHO + CaCO₃
- 15. Which of the following compound gives a ketone with Grignard reagent
 - (a) Formaldehyde
- (b) Ethyl alcohol
- (c) Methyl cyanide
- (d) Methyl iodide
- **16.** When a mixture of calcium benzoate and calcium acetate is dry distilled, the resulting compound is
 - (a) Acetophenone
- (b) Benzaldehyde
- (c) Benzophenone
- (d) Acetaldehyde
- 17. Amongst the following compounds, the one that will not respond to Cannizzaro reaction upon treatment with alkali is
 - (a) Cl₃CCHO
- (b) Me₃CCHO
- (c) C₆H₅CHO
- (d) HCHO
- 18. Select the reagent for the following reaction

$$\rightarrow$$
 OHC – (CH₂)₄ – CHO

- (a) SeO₂
- (b) $O_3, Z_n/H_2O$
- (c) O₃,H₂O₂ CH₃COOH (d) PCC

19. Identify 'C' in the following

$$+CH_3 - CH - CH_3 \xrightarrow{Anhyd \ AlCl_3} \xrightarrow{HCl}$$

$$A \xrightarrow{O_2} B \xrightarrow{dil.H_2SO_4} Phenol+C$$

- (a) Water
- (b) Ethanol
- (c) Propanone
- (d) Cumene hydroperoxide
- 20. Reimer-Tiemann reaction involves a
 - (a) Carbonium ion intermediate
 - (b) Carbene intermediate
 - (c) Carbanion intermediate
 - (d) Free radical intermediate
- 21. The major products in the reaction

$$Br_3CCHO \xrightarrow{NaOH}$$
 are

(b)
$$NaBr + HO$$
 $C = C$ Br Br

$$(d) \quad \stackrel{Br}{\underset{O}{|Br|}} \stackrel{Br}{\underset{O}{|Br|}} OH \quad + \quad \stackrel{Br}{\underset{O}{|Br|}} \stackrel{Br}{\underset{O}{|Br|}} ONa$$

3. Properties of Aldehydes and Ketones

- C₂H₅CHO and (CH₃)₂CO can be distinguished by testing with
 - (a) Phenyl hydrazine
- (b) Hydroxylamine
- (c) Fehling solution
- (d) Sodium bisulphate
- 2. Haloform test is given by the following substance
 - (a) HCHO
- (b) $(CH_3)_2CO$
- (c) CH₃OCH₃
- (d) CH₃CH₂CI

- Which one of the following reagents is used to reduce an aldehyde to primary alcohol
 - (a) N_2H_4/KOH
 - (b) Zn/Hg and conc. HCl
 - (c) LiAlH₄
 - (d) Alkaline CuSO₄ containing Rochelle salt
 - (e) Ag_2O/OH^-
- 4. Which of the following does not turn Schiff's reagent to pink
 - (a) Formaldehyde
- (b) Benzaldehyde
- (c) Acetone
- (d) Acetaldehyde
- 5. Upon treatment with I_2 and aqueous NaOH, which of the following compounds will form iodoform
 - (a) CH₃CH₂CH₂CH₂CHO
 - (b) CH3CH2COCH2CH3
 - (c) CH3CH2CH2CH2CH2OH
 - (d) CH₃CH₂CH₂CH(OH)CH₃
- **6.** For making distinction between 2-pentanone and 3-pentanone the reagent to be employed is
 - (a) $K_2Cr_2O_7/H_2SO_4$
- (b) Zn Hg/HCl
- (c) SeO₂
- (d) Iodine / NaOH
- Aldehydes and ketones can be reduced to hydrocarbon by using
 - (a) LiAlH₄
- (b) $H_2/Pd BaSO_4$
- (c) Na-Hg/HCI
- (d) $NH_2 NH_2 / C_2H_5ONa$
- 8. Which gives lactic acid on hydrolysis after reacting with HCN
 - (a) HCHO
- (b) CH₃CHO
- (c) C₆H₅CHO
- (d) CH₃COCH₃
- **9.** Reaction of butanone with methylmagnesium bromide followed by hydrolysis gives
 - (a) 2-methyl-2-butanol
- (b) 2-butanol
- (c) 3-methyl-2-butanol
- (d) 2, 2-dimethyl-1-butanol
- (e) 2-pentanol
- The reaction of an aldehyde with hydroxylamine gives a product which is called
 - (a) Aminohydroxide
- (b) Hydrazone
- (c) Semicarbazone
- (d) Oxime

11. Compound A undergoes Cannizzaro reaction and B undergoes positive iodoform test. Therefore

(a) A = Acetaldehyde

B = 1-Pentanal

(b) $A = C_6H_5CH_2CHO$

B = 3-Pentanone

(c) A = Formaldehyde

; B = 2-Pentanone

(d) A = Propionaldehyde

B = 1-Pentanol

12. A compound has a vapour density of 29. On warming an aqueous solution of alkali, it gives a yellow precipitate. The compound is

(a) CH₃CH₂CHO

(b) CH3CHOHCH3

(c) CH₃COCH₃

(d) CH₃CH₂COOH

13. Which responds to +ve iodoform test

(a) Butanol

(b) Butan-1-al

(c) Butanol-2

(d) 3-pentanone

 CH_3

- **14.** $CH_3 \overset{\circ}{C} CHO$ shows Cannizaro's reaction due to CH_3
 - (a) Carbon is bounded by 3 methyl groups
 - (b) Absence of α -hydrogen atom
 - (c) Due to steric effect
 - (d) None of these
- The formation of cyanohydrin from a ketone is an example of
 - (a) Electrophilic addition
- (b) Nucleophilic substitution
- (c) Electrophilic substitution (d) Nucleophilic addition
- 16. Which of the following statements is not correct
 - (a) Aldehydes and ketones undergo nucleophilic additions
 - (b) Aldehydes and ketones undergo electrophilic substitutions
 - (c) Aldehydes and ketones contains polar carbonyl groups
 - (d) Lower members of aldehydes and ketones are soluble in water due to hydrogen bonding
- 17. When Grignard reagent reacts with ketone it yields

(a) 1° alcohol

(b) 2° alcohol

(c) 3° alcohol

(d) Ethanol

- **18.** The reagent which does not react with both, acetone and benzaldehyde
 - (a) Sodium hydrogen sulphite
 - (b) Phenyl hydrazine
 - (c) Fehling's solution
 - (d) Grignard reagent

- In Clemmensen reduction, carbonyl compound is treated with......
 - (a) Zinc amalgam +HCl
 - (b) Sodium amalgam +HCl
 - (c) Zinc amalgam + nitric acid
 - (d) Sodium amalgam +HNO₃
- **20.** A compound does not react with 2, 4 di-nitrophenyl hydrazine and *Na*, compound is
 - (a) Acetone

(b) Acetaldehyde

(c) CH₃OH

(d) $CH_2 = CHOCH_3$

21. Which one of the following pairs is not correctly matched

(a)
$$> C = O \xrightarrow{\text{Clemensen's reduction}} > CH_2$$

(b)
$$> C = O \xrightarrow{\text{Wolff - Kishner reduction}} > CHOH$$

(c)
$$-COCI \xrightarrow{\text{Rosenmund's reduction}} CHC$$

(d)
$$-C \equiv N \xrightarrow{\text{Stephen's reduction}} CHO$$

- 22. Which of the following reagents is used to distinguish acetone and acetophenone
 - (a) NaHSO₃
- (b) Grignard reagent
- (c) Na₂SO₄
- (d) NH₄Cl
- **23.** An aromatic compound 'X' with molecular formula $C_9H_{10}O$ gives the following chemical tests
 - (i) Forms 2,4-DNP derivative
 - (ii) Reduces Tollen's reagent
 - (iii) Undergoes Cannizzaro reaction and
 - (iv) On vigorous oxidation 1,2-benzenedicarboxylic acid is obtained

X is

(a)
$$C_2H_5$$
 (b) C_2H_6

(c)
$$CH_3$$
 CH_3 CH_3 CH_3

24. $OCH - CHO \xrightarrow{OH^-} HOH_2C - COOH$

The reaction given is

- (a) Aldol condensation
- (b) Knovenegel reaction
- (c) Cannizzaro reaction
- (d) None of these

25. Claisen condensation is not given by

(a)
$$\bigcirc$$
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

- 26. Ketones react with Mg-Hg over water gives
 - (a) Pinacolone
- (b) Pinacols
- (c) Alcohols
- (d) None of these
- **27.** A compound $A \rightarrow C_5 H_{10} C I_2$ on hydrolysis gives $C_5 H_{10} O$ which reacts with NH2OH, forms iodoform but does not give Fehling test. A is

(a)
$$CH_3 - C - CH_2 - CH_2 - CH_3$$

(b)
$$CH_3CH_2 - \overset{\square}{C} - CH_2CH_3$$
 CI

$$\begin{array}{ccc} CI & CI \\ (d) & CH_3 - CH - CH - CH_2 - CH_3 \end{array}$$

- 28. Which of the following compound does not react with concentrated alkali to give corresponding alcohol and salt of carboxylic acid
 - (a) Benzaldehyde
- (b) Trimethyl acetaldehyde
- (c) Dimethyl acetaldehyde (d) Formaldehyde
- 29. Which of the following will fail to react with potassium dichromate and dilute sulphuric acid
 - (a) Ethyl alcohol (ethanol)
 - (b) Acetaldehyde (ethanal)
 - (c) Secondary propyl alcohol (2-propanol)
 - (d) Acetone (propanone)

30.
$$CH = CH \xrightarrow{HgSO_4} A \xrightarrow{dilute} B$$
. The compound B is

(b)
$$CH_3 - CH - CH_2 - COONa$$

OH

(c)
$$CH_3 - CH - CH_2 - C - CH_3$$

OH

(d)
$$CH_3 - CH - CH_2 - C - CH_3$$
 CH_3

- 31. In which of the following reactions, the product obtained is
 - (a) $CH_3COCH_3 \xrightarrow{NaBH_4}$
 - (b) CH_3COCI Rosenmund's reduction
 - (c) $CH_3CH_2CO_2CH_2CH_3 \xrightarrow{Sn, HCl}$
 - (d) $CH_3CH_2COCH_3 \xrightarrow{LiAlH_4} \rightarrow$
- 32. Which of the following reactions will not result in the formation of carbon-carbon bonds
 - (a) Cannizzaro reaction
 - (b) Wurtz reaction
 - (c) Reimer-Tiemann reaction
 - (d) Friedel-Crafts acylation
- 33. Predict the product

$$\begin{array}{c}
O \\
\hline
MeMqBr \\
H_3O^+
\end{array}$$

- **34.** Which of the following will form two isomers with semi carbazide
 - (a) Benzaldehyde
- (b) Acetone
- (c) Benzoquinone
- (d) Benzophenone
- 35. Identify the correct statement
 - (a) Aldehydes on reduction give secondary alcohols
 - (b) Ketones on reduction gives primary alcohols
 - (c) Ketones reduce Fehling's solution and give red cuprous oxide
 - (d) Ketones do not react with alcohols
- **36.** When NH_2OH reacts with unsymmetrical ketone then number of products formed is
 - (a) 1

(b) 2

(c) 3

- (d) 4
- **37.** The correct sequence of steps involved in the mechanism of cannizzaro's reaction is
 - (a) Nucleophilic attack, transfer of H^- and transfer of H^+
 - (b) Transfer of H^- , transfer of H^+ and nucleophilic attack
 - (c) Transfer of H^+ , nucleophilic attack and transfer of H^-
 - (d) Electrophilic attack by OH^- , transfer of H^+ and transfer of H^-
- **38.** On hydrolysis of a "compound", two compounds, are obtained. One of which on treatment with sodium nitrite and hydrochloric acid gives a product which does not respond to iodoform test. The second one reduces Tollen's reagent and Fehling's solution. The "Compound" is
 - (a) CH₃CH₂CH₂NC
 - (b) CH₃CH₂CH₂CN
 - (c) $CH_3CH_2CH_2ON = O$
 - (d) CH₃CH₂CH₂CON(CH₃)₂
- 39. Consider the following reactions

I.
$$H_3CCI_3 \xrightarrow{OH^{\Theta}}$$

II.
$$H_3CCHO \xrightarrow{[Ag(NH_3)_2]^+OH^{\Theta}}$$

III.
$$H_3CCO_2C_2H_5 \xrightarrow{OH^{\Theta}}$$

Carboxylic acid is the final product only in the reaction (s)

(a) I, II

(b) II, III

(c) II

(d) III

40. In the following reaction

$$\underbrace{\begin{array}{c} 1.\text{Ozonolysis} \\ \hline \\ 2.\text{OH} \end{array}} X$$

The major product X is

- **41.** The reddish brown precipitate formed in the Fehling's test for aldehydes (*RCHO*) is due to the formation of
 - (a) Cu
- (b) Cu₂O
- (c) CuO
- (d) (RCOO)₂Cu
- **42.** Upon reaction with CH_3MgBr followed by protonation, the compound that produces ethanol is
 - (a) CH₃CHO
- (b) HCOOH
- (c) HCHO
- (d) (CHO)₂

4. Formaldehyde

- 1. Hexamethylene tetramine is used as
 - (a) Analgesic
- (b) Antipyretic
- (c) Urinary antiseptic
- (d) All of these
- 2. $3HCHO \stackrel{\text{cooled}}{\longleftarrow} X. X \text{ is}$
 - (a) Formalin
- (b) Paraformaldehyde
- (c) Paraldehyde
- (d) Metaformaldehyde

5. Acetaldehyde

- Reaction of acetaldehyde with HCN followed by hydrolysis gives a compound which shows
 - (a) Optical isomerism
- (b) Geometrical isomerism
- (c) Metamerism
- (d) Tautomerism

- **2.** Which of the following is the industrial method of preparation of acetaldehyde
 - (a) $CH_3CN \xrightarrow{SnCl_2} CH_3CH = NH \xrightarrow{H_3O^+} CH_3CHO$
 - (b) $CH_3COCl + H_2 \xrightarrow{Pd} CH_3CHO + HCl$
 - (c) $CH_2 = CH_2 + H_2O \xrightarrow{Pd^{++}} CH_3CHO$
 - (d) None of these
- 3. Acetaldehyde cannot show
 - (a) Iodoform test
- (b) Lucas test
- (c) Benedict's test
- (d) Tollen's test
- **4.** Identify the product Y in the sequence $CH_3CHO + CH_3MgI \xrightarrow{\text{ether}} X \xrightarrow{H_2O/H^+} Y$
 - (a) CH₃OH
- (b) CH₃CH₂OH
- (c) (CH₃)₂CHOH
- (d) (CH₃)₃COH
- **5.** The most appropriate reagent to distinguish between acetaldehyde and formaldehyde is
 - (a) Fehling's solution
 - (b) Tollen's reagent
 - (c) Schiff's reagent
 - (d) Iodine in presence of base
- **6.** Upon treatment with $Al(OEt)_3$ followed by usual reactions (work up), CH_3CHO will produce
 - (a) Only CH3COOCH2CH3
 - (b) A mixture of CH3COOH and EtOH
 - (c) Only CH3COOH
 - (d) Only EtOH
- **7.** Compounds A and C in the following reaction are......

$$CH_3CHO \xrightarrow{\text{(i)}} (A) \xrightarrow{H_2SO_4,\Delta} (B) \xrightarrow{\text{oxidation}} (C)$$

- (a) Identical
- (b) Positional isomers
- (c) Functional isomers
- (d) Optical isomers

6. Acetone

- 1. Compound which gives acetone on ozonolysis
 - (a) $CH_3 CH = CH CH_3$ (b) $(CH_3)_2C = C(CH_3)_2$
 - (c) $C_6H_5CH = CH_2$
- (d) $CH_3CH = CH_2$

2. Identify the reactant X and the product Y

$$CH_3 - CO - CH_3 + X \rightarrow (CH_3)_3 C - OMg - CI$$

hydrolysis

$$Y + Mg(OH)Cl$$

- (a) $X = MgCl_2$; $Y = CH_3CH = CH_2$
- (b) $X = CH_3MgCl$; $Y = C_2H_5COCH_3$
- (c) $X = CH_3MgCI; Y = (CH_3)_3 C OH$
- (d) $X = C_2H_5MgCl; Y = (CH_3)_3C OH$
- An important reaction of acetone is autocondensation in presence of concentrated sulphuric acid to give the aromatic compound
 - (a) Mesitylene
- (b) Mesityl oxide
- (c) Trioxan
- (d) Phorone
- Reduction of acetone in the presence of sodium borohydride gives
 - (a) 1-propanol
- (b) 2-propanol
- (c) Propene
- (d) n-propane
- **5.** An organic compound X is oxidised by using acidified $K_2Cr_2O_7$. The product obtained reacts with phenyl hydrazine but does not answer silver mirror test. The possible structure of X is
 - (a) CH₃COCH₃
- (b) (CH₃)₂CHOH
- (c) CH₃CHO
- (d) CH₃CH₂OH

7. Benzaldehyde

- Benzyl alcohol and sodium benzoate is obtained by the action of sodium hydroxide on benzaldehyde. This reaction is known as
 - (a) Perkin's reaction
- (b) Cannizzaro's reaction
- (c) Sandmeyer's reaction
- (d) Claisen condensation
- **2.** Cinnamic acid is formed when C_6H_5 CHO condenses with $(CH_3CO)_2O$ in presence of
 - (a) Conc. H₂SO₄
- (b) Sodium acetate
- (c) Sodium metal
- (d) Anhydrous ZnCl₂
- 3. The reaction

$$C_6H_5CHO + CH_3CHO \rightarrow C_6H_5CH = CH - CHO$$

- is known as
- (a) Perkin's reaction
- (b) Claisen condensation
- (c) Benzoin condensation
- (d) Cannizzaro's reaction

- 4. Which products are formed when the compound
 - CHO is treated with concentrated aqueous KOH

solution

(a)
$$\dot{K}\bar{O}$$
—CHO

(b)
$$C - OK + CH_2OH$$

(d)
$$C - \bar{O}K + \bar{O}K$$

5. CHO
$$\begin{array}{c} CHO \\ \hline 1.conc.NaOH \\ CHO \end{array}$$

(c)
$$COOH$$
 (d) CH_2OH

- **6.** In the presence of a dilute base C_6H_5CHO and CH_3CHO react together to give a product. The product is
 - (a) $C_6H_5CH_3$
- (b) $C_6H_5CH_2CH_2OH$
- (c) C₆H₅CH₂OH
- (d) $C_6H_5CH = CHCHO$
- 7. The most reactive compound towards formation of cyanohydrin on treatment with KCN followed by acidification is
 - (a) Benzaldehyde
- (b) p-nitrobenzaldehyde
- (c) Phenyl acetaldehyde
- (d) p-hydroxybenzaldehyde

8. 4 – formylbenzoic acid on treatment with one equivalent of hydrazine followed by heating with alcoholic *KOH* gives the major product

(a)
$$O H$$

$$O H$$

$$O NHNH_2$$
(b) $O H$

$$O K$$

8. Acetophenone and Benzophenone

- 1. Which can undergo haloform reaction
 - (a) $(CH_3)_3 C OH$
- (b) $(C_2H_5)_2C=0$
- (c) Acetophenone
- (d) Benzophenone
- **2.** Consider the following statement Acetophenone can be prepared by
 - (1) Oxidation of 1-phenylethanol
 - (2) Reaction of benzalthanol with methyl magnesium bromide
 - (3) Friedel craft's reaction of benzene with acetyl chloride
 - (4) Distillation of calcium benzoate
 - (a) 1 and 2
- (b) 1 and 4
- (c) 1 and 3
- (d) 3 and 4
- 3. Which is not true about acetophenone
 - (a) Reacts to form 2, 4-dinitrophenyl hydrazine
 - (b) Reacts with Tollen's reagent to form silver mirror
 - (c) Reacts with $I_2/NaOH$ to form iodoform
 - (d) On oxidation with alkaline KMnO₄ followed by hydrolysis gives benzoic acid
- **4.** Bromination of *PhCOMe* in acetic acid medium produces mainly

- 5. A compound that shows positive iodoform test is
 - (a) 2 pentanone
- (b) 3 pentanone
- (c) 3 pentanol
- (d) 1 pentanol

Unsaturated Cyclic and Di-aldehydes and **Ketones**

The product of following reaction

$$= O \xrightarrow{H_2/Pt} \text{ is}$$

2.
$$H_3C$$
 C CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Find the organic acid produced from the above reaction

- (a) CH3COO-Na+
- COO-Na+
- COO^-Na^+ (d) None of the above
- The most suitable reagent A, for the reaction

$$CH_3$$
 A CH_3

is (are)

(a) O_3

- (b) H_2O_2
- (c) NaOH H2O2
- (d) m-chloroperbenzoic acid
- 4. Identify 'Q' in the following sequence of reactions

$$COCH_3$$

$$\xrightarrow{PCI_5} P \xrightarrow{NaNH_2} Q$$
excess

(d)

5.
$$OCH_3 + CH_3MgBr \xrightarrow{H_3O^+} P$$

Product P in the above reaction is

- 6. Which of the following will be most readily dehydrated in acidic conditions
 - OH (b)
 - (c) (d)
- 7. The reaction of ethyl methyl ketone with $\ensuremath{\mathit{Cl}}_2$ / excess $\ensuremath{\mathit{OH}}^$ gives the following major product
 - (a) CICH2CH2COCH3
- (b) CH₃CH₂COCCl₃
- (c) $CICH_2CH_2COCH_2CI$ (d) $CH_3CCI_2COCH_2CI$

10. IIT-JEE/ AIEEE

- 1. Among the given compounds, the most susceptible to nucleophilic attack at the carbonyl group is [1997]
 - (a) MeCOCI
- (b) MeCHO
- (c) MeCOOMe
- (d) MeCOOCOMe
- 2. Methyl ethyl ketone is prepared by the oxidation of [1987]
 - (a) 2-propanol
- (b) 1-butanol
- (c) 2-butanol
- (d) t-butyl alcohol
- 3. The most suitable reagent for the conversion of $RCH_2OH \rightarrow RCHO$ is [2014]
 - (a) KMnO₄
 - (b) $K_2Cr_2O_7$
 - (c) CrO_3
 - (d) PCC (Pyridine chloro chromate)

In the following sequence of reactions

Toluene
$$\xrightarrow{KMnO_4}$$
 A $\xrightarrow{SOCl_2}$ B $\xrightarrow{H_2/Pd}$ $\xrightarrow{BaSO_4}$ C,

the product C is

[2015]

- (a) C_6H_5COOH
- (b) $C_6H_5CH_3$
- (c) $C_6H_5CH_2OH$
 - (d) C₆H₅CHO
- On vigorous oxidation by permanganate solution $(CH_3)_2C = CH - CH_2CH_2CH_3$ gives [2002]

OH OH (a)
$$CH_3 - C - CH - CH_2CH_3$$
 CH_3

(b)
$$CH_3$$
 $CHCO_2H + CH_3COOH$

(c)
$$CH_3$$
 $CHOH + CH_3CH_2CH_2OH$ CH_3

(d)
$$CH_3$$
 $C = O + CH_3CH_2CH_2COOH$

- **6.** Reaction $R > CO + HCN \rightarrow R C OH$ is
 - (a) Electrophilic substitution
 - (b) Electrophilic addition
 - (c) Nucleophilic addition
 - d) Nucleophilic substitution
- 7. Cannizzaro reaction is not shown by
 - (a) HCHO
- (b) C_6H_5CHO
- (c) CH₃CHO
- (d) All of these
- 8. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon

[2004]

[1983]

- (a) Acetamide
- (b) Acetic acid
- (c) Ethyl acetate
- (d) Butan-2-one
- The increasing order of the rate of HCN addition to compounds A-D is
 - (A) HCHO
- (B) CH3COCH3
- (C) PhCOCH₂
- (D) PhCOPh
- [2006]

- (a) A < B < C < D
- (b) D < B < C < A
- (c) D < C < B < A
- (d) C < D < B < A

- 10. Trichloroacetaldehyde was subjected Cannizzaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate ion and another compound. The [2011] other compound is
 - (a) 2,2,2-trichloroethanol
- (b) Trichloromethanol
- (c) 2,2,2-trichloropropanol (d) Chloroform
- 11. Base catalysed aldol condensation occurs with
 - (a) Benzaldehyde
 - (b) 2, 2-dimethyl propionaldehyde
 - (c) Acetaldehyde
 - (d) Formaldehyde
- 12. The pair of compounds in which both the compounds give [2004] positive test with Tollen's reagent is
 - (a) Glucose and Sucrose
 - (b) Fructose and Sucrose
 - (c) Acetophenone and Hexanal
 - (d) Glucose and Fructose
- 13. How will you convert butan-2-one to propanoic acid

[2005]

[1991]

- (a) Tollen's reagent
- (b) Fehling's solution
- (c) NaOH/I2/H+
- (d) NaOH/NaI/H+
- **14**. The major product *H* in the given reaction sequence is

$$CH_3 - CH_2 - CO - CH_3 \xrightarrow{\Theta CN} G \xrightarrow{95\%H_2SO_4} H_{eat} \rightarrow H$$

[2012]

[1998]

(c)
$$CH_3 - CH_2 - C - COOH$$
 (d) $CH_3 - CH = C - CO - NH_2$ | CH_3 CH_3

- 15. Which of the following will react with water

- (a) CHCl₃
- (b) CI₃CCHO
- (c) CCI₄
- (d) CICH2CH2CI

- 16. Compound 'A' (molecular formula C_3H_8O) is treated with acidified potassium dichromate to form a product 'B' (molecular formula C₃H₆O). 'B' forms a shining silver mirror on warming with ammoniacal silver nitrate. 'B' when treated with an aqueous solution of $H_2NCONHNH_2.HCI$ and sodium acetate gives a product 'C'. Identify the structure of 'C' [2002]
 - (a) $CH_3CH_2CH = NNHCONH_2$
 - (b) $CH_3 CH = NNHCONH_2$
 - (c) $CH_3CH = NCONHNH_2$
 - (d) CH₃CH₂CH NCONHNH₂
- 17. Which of the following has the most acidic hydrogen [2000]
 - (a) 3-hexanone
- (b) 2, 4-hexanedione
- (c) 2, 5-hexanedione
- (d) 2, 3-hexanedione
- 18. The correct sequence of reagents for the following conversion will be

$$\begin{array}{c}
O \\
HO \\
CHO
\end{array}$$

$$\begin{array}{c}
HO \\
CH_3
\end{array}$$

$$\begin{array}{c}
HO \\
CH_3
\end{array}$$

[2017]

- $CH_{3}MgBr, H^{+}/CH_{3}OH, [Ag(NH_{3})_{2}]^{+}OH^{-}$
- $CH_3MgBr, [Ag(NH_3)_2]^+OH^-, H^+/CH_3OH$
- $[Ag(NH_3)_2]^+OH^-, CH_3MgBr, H^+/CH_3OH$
- $[Ag(NH_3)_2]^+OH^-, H^+/CH_3OH, CH_3MgBr$
- 19. Ozonolysis of an organic compound gives formaldehyde as one of the products. This confirms the presence of [2011]
 - (a) Two ethylenic double bonds
 - (b) A vinyl group
 - (c) An isopropyl group
 - (d) An acetylenic triple bond
- 20. When acetaldehyde is heated with Fehling solution, it gives a red precipitate of [1982]
 - (a) Cu

- (b) CuO
- (c) Cu₂O
- (d) Cu(OH)2
- 21. Which of the following on heating with aqueous KOH, produces acetaldehyde [2009]
 - (a) CH3COCI
- (b) CH₃CH₂CI
- (c) CH2CICH2CI
- (d) CH3CHCl2

22. The number of aldol reaction(s) that occurs in the given transformation is

CH₃CHO + 4HCHO ___conc. aq. NaOH [2012] (a) 1

- (b) 2ÓН

- (c) 3
- (d) 4
- 23. The enol form of acetone, after treatment with D_2O_1 gives [1999]

(a) $CH_3 - C = CH_2$ (b) $CD_3 - C - CD_3$ OD (c) $CH_2 = C - CH_2D$ (d) $CD_2 = C - CD$

(b)
$$CD_3 - \overset{||}{C} - CD_3$$

(d)
$$CD_2 = \overset{\mid}{C} - CD$$

- 24. m-chlorobenzaldehyde on reaction with conc. KOH at room temperature gives [1991]
 - m-chlorobenzoate and m-hydroxy (a) Potassium benzaldehyde
 - (b) m-hydroxy benzaldehyde and m-chlorobenzyl alcohol
 - (c) m-chlorobenzyl alcohol and m-hydroxy benzyl alcohol
 - (d) Potassium m-chlorobenzoate and m-chlorobenzyl alcohol
- 25. A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives
 - (a) Benzyl alcohol and sodium formate
 - (b) Sodium benzoate and methyl alcohol
 - (c) Sodium benzoate and sodium formate
 - (d) Benzyl alcohol and methyl alcohol
- 26. In Cannizzaro reaction given below

 $2PhCHO \xrightarrow{:OH} PhCH_2OH + PhCO_2$ the slowest step is [2009]

- (a) The attack of :OH at the carboxyl group
- (b) The transfer of hydride to the carbonyl group
- (c) The abstraction of proton from the carboxylic group
- (d) The deprotonation of PhCH2OH
- 27. In the given transformation, which the following is the most appropriate reagent

$$CH=CHCOCH_3$$
 $CH=CHCH_2CH_3$
 $CH=CHCH_2CH_3$

[2012]

- (a) NH_2NH_2/OH
- (b) Zn-Hg/HCl
- (c) Na, Liq. NH₃
- (d) NaBH₄

28. The appropriate reagent for the transformation

$$CH_3$$
 CH_2CH_3

[2000]

(a) Zn(Hg), HCl

(b) NH₂ NH₂ / OH⁻

(c) H_2/Ni

(d) NaBH₄

Major Product is

[2003]

30. The major product of the following reaction is

$$\begin{array}{c}
 & \xrightarrow{RCH_2OH} \\
 & \xrightarrow{H^{\oplus} \text{(anhydrous)}}
\end{array}$$

[2011]

(a) A hemiacetal

(b) An acetal

(c) An ether

(d) An ester

31. The product of acid hydrolysis of *P* and *Q* can be distinguished by

$$P = H_2C = CH_3 \qquad Q = OCOCH_3$$

$$OCOCH_3 \qquad OCOCH_3$$

[2003]

(a) Lucas reagent

(b) 2,4-DNP

(c) Fehling's solution

(d) NaHSO3

32.
$$MeO - CHO + (X) - CH_{3COON_a} + H_{3O^+}$$

The compound (X) is

[2005]

(a) CH3COOH

(b) BrCH2 - COOH

(c) (CH₃CO)₂O

(d) CHO - COOH

11. NEET/ AIPMT/ CBSE-PMT

1. A strong base can abstract an α -hydrogen from

[2008]

(a) Ketone

(b) Alkane

(c) Alkene

(d) Amine

2. The correct statement regarding a carbonyl compound with a hydrogen atom on its alphacarbon, is [2016]

- (a) A carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol
- (b) A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibraction
- (c) A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as carbonylation
- (d) A carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism
- **3.** The general order of reactivity of carbonyl compounds for nucleophilic addition reactions is [1995]

(a)
$$H_2C = O > RCHO > ArCHO > R_2C = O > Ar_2C = O$$

(b)
$$ArCHO > Ar_2C = O > RCHO > R_2C = O > H_2C = O$$

(c)
$$Ar_2C = O > R_2C = O > ArCHO > RCHO > H_2C = O$$

(d)
$$H_2C = O > R_2C = O > Ar_2C = O > RCHO > ArCHO$$

- **4.** In the following reaction, product P is $R \ddot{C} Cl$ [1991, 2000, 02]
 - (a) RCH2OH
- (b) RCOOH
- (c) RCHO
- (d) RCH₃
- Ketones $(R C R_1)$ where $R = R_1$ = alkyl group. It can be obtained in one step by [1997]

- (a) Hydrolysis of esters
- (b) Oxidation of primary alcohol
- (c) Oxidation of secondary alcohol
- (d) Reaction of acid halide with alcohols
- Consider the following reaction

$$\frac{COCI}{P_{d-BaSO_4}} A^{t}$$

The product 'A' is

[2012]

- (a) C_6H_5CHO
- (b) C_6H_5OH
- (c) $C_6H_5COCH_3$
- (d) C_6H_5CI
- 7. Predict the product 'B' in the sequence of reaction $HC \equiv CH \xrightarrow{30\%H_2SO_4} A \xrightarrow{NaOH} B$ [2001]
 - (a) CH₃COONa
- (b) CH₃COOH
- (c) CH₃CHO
- (d) $CH_3 CH CH_2CHO$ OH
- A single compound of the structure

is obtainable from ozonolysis of which of the following cyclic compounds [2015]

- (c)
- (d)

A and B in the following reactions are

$$R - C - R' \xrightarrow{HCN} A \xrightarrow{B} R > C < CH_2NH_2$$

(a) $A = RR'C < \frac{CN}{OH}$, $B - LiAlH_4$

(b)
$$A = RR'C < OH \\ COOH$$
, $B - NH_3$

(c)
$$A = RR'C < \frac{CN}{OH}$$
, $B = H_3O^{\oplus}$

(d) $A = RR' CH_2 CN$, B = NaOH

[2001]

[2003]

- 10. Which of the following is incorrect (a) FeCl₃ is used in the detection of phenols
 - (b) Fehling solution is used in the detection of glucose
 - (c) Tollen's reagent is used in detection of unsaturation
 - (d) NaHSO3 is used in the detection of carbonyl compounds
- 11. Which of the following compound will undergo self-aldol condensation in the presence of cold dilute alkali
 - (a) C_6H_5CHO
- (b) CH3CH2CHO
- (c) $CH \equiv C CHO$
- (d) $CH_2 = CH CHO$
- 12. Clemmensen reduction of a ketone is carried out in the presence of which of the following [2003, 11]
 - (a) H_2 and Pt as catalyst (b) Glycol with KOH
 - (c) Zn Hg with HCl (d) $LiAlH_a$
- 13. Aldol condensation will not take place in
 - [1996, 99]

- (a) HCHO
- (b) CH3CH2CHO
- (c) CH3CHO
- (d) CH3COCH3
- 14. Which one of the following reactions is a method for the conversion of a ketone into a hydrocarbon [1989]
 - (a) Aldol condensation
- (b) Reimer-Tiemann reaction
- (c) Cannizzaro reaction
- (d) Wolf-Kishner reduction
- 15. Consider the reaction

$$RCHO + NH_2NH_2 \rightarrow RCH = N - NH_2$$

What sort of reaction is it

[2012]

- (a) Electrophilic addition elimination reaction
- (b) Free radical addition elimination reaction
- (c) Electrophilic substitution elimination reaction
- (d) Nucleophilic addition elimination reaction

- 16. Reduction of aldehydes and ketones into hydrocarbons using zinc amalgam and conc. HCI is called [2009]
 - (a) Clemmensen reduction (b) Cope reduction
 - (c) Dow reduction
- (d) Wolff-Kishner reduction
- 17. A carbonyl compound reacts with hydrogen cyanide to form cyanohydrin which on hydrolysis forms a racemic mixture of lpha -hydroxy acid. The carbonyl compound is
 - (a) Diethyl ketone
- (b) Formaldehyde
- (c) Acetaldehyde
- (d) Acetone
- 18. Acetaldehyde reacts with

[1991]

- (a) Electrophiles only
- (b) Nucleophiles only
- (c) Free radicals only
- (d) Both electrophiles and nucleophiles
- 19. Which of the following compound is resistant to nucleophilic attack by hydroxyl ions [1998]
 - (a) Methyl acetate
- (b) Acetonitrile
- (c) Dimethyl ether
- (d) Acetamide
- 20. In which of the following reactions new carbon-carbon bond is not formed [2010]
 - (a) Cannizzaro reaction
- (b) Wurtz reaction
- (c) Aldol condensation
- (d) Friedel-Crafts reaction
- 21. Reaction of a carbonyl compound with one of the following reagents involves nucleophilic addition followed by elimination of water. The reagent is [2015]
 - (a) A grignard reagent
 - (b) Hydrazine in presence of feebly acidic solution
 - (c) Hydrocyanic acid
 - (d) Sodium hydrogen sulphite
- **22.** Which one of the following undergoes reaction with 50%sodium hydroxide solution to give the corresponding alcohol [2004; 2007] and acid
 - (a) Butanal
- (b) Benzaldehyde
- (c) Phenol
- (d) Benzoic acid
- 23. The correct order of reactivity of PhMgBr with

$$CH_3 - C - CH_3$$
 is

- (I)
- (II)
- (III)
- [2011]

- (a) (I) > (II) > (III)
- (b) (III) > (II) > (I)
- (c) (II) > (III) > (I)
- (d) (I) > (III) > (II)

- 24. The product formed in Aldol condensation is
 - (a) A beta-hydroxy acid
 - (b) A beta-hydroxy aldehyde or a beta-hydroxy ketone
 - (c) An alpha-hydroxy aldehyde or ketone
 - (d) An alpha, beta unsaturated ester
- 25. An organic compound 'X' having molecular formula C₅H₁₀O yields phenyl hydrazone and gives negative response to the iodoform test and Tollen's test. It produces npentane on reduction. 'X' could be [2015]
 - (a) 2-pentanone
- (b) 3-pentanone
- (c) n-amyl alcohol
- (d) Pentanal
- 26. The major organic product formed from the following reaction [2005]

$$\begin{array}{c}
O \\
\stackrel{\text{(i) } CH_3NH_2}{\longrightarrow} \dots
\end{array}$$

27. Which of the following reagents would distinguish ciscyclopenta -1, 2- diol from the trans-isomer

[2016]

[2007]

- (a) Acetone
- (b) Ozone
- (c) MnO₂
- (d) Aluminium isopropxide
- 28. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating [2017]

29. Consider the reaction

Identify A, X, Y and Z

[2017]

- (a) A Methoxymethane, X Ethanoic acid, Y Acetate ion, Z hydrazine
- (b) A Methoxymethane, X Ethanol, Y Ethanoic acid, Z– Semicarbazide
- (c) A Ethanal, X Ethanol, Y But-2-enal, Z semicarbazone
- (d) A Ethanol, X Acetaldehyde, Y Butanone, Z Hydrazone
- **30.** Compound A, $C_8H_{10}O$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell. A and Y are respectively [2018]

(a)
$$H_3C$$
 CH_2-OH and I_2

(b)
$$CH_2 - CH_2 - OH$$
 and I_2

(c)
$$CH - CH_3$$
 and I_2 OH

(d)
$$CH_3$$
 CH_3 OH and I_2

31. Trichloroacetaldehyde, CCl_3CHO reacts with chlorobenzene in presence of sulphuric acid and produces

[2009]

(c)
$$CI \longrightarrow CH \longrightarrow CI$$
(d) $CI \longrightarrow CH \longrightarrow CI$

32. Paraldehyde is used as a

1.1

[1989]

(a) Medicine

(b) Poison

(c) Polymer

(d) Dye

33. C_2H_5OH and $RCOOC_2H_5$ can be separated from CH_3CHO using [2006]

(a) Tollen's reagent

(b) $I_2 / NaOH$

(c) NH₂NH₂

(d) NaHSO₃

34. In this reaction

$$CH_3CHO + HCN$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad CH_3CH(OH)CN \xrightarrow{H^+/OH^-} CH_3CH(OH)COOH$$

an asymmetric centre is generated. The acid obtained would be [2003]

- (a) 20% D + 80% L-isomer
- (b) D-isomer
- (c) L-isomer
- (d) 50% D + 50% L-isomer

35.
$$3CH_3COCH_3 \xrightarrow{HCl} (CH_3)_2C = CH - CO - CH = C(CH_3)_2$$

This polymer (*B*) is obtained when acetone is saturated with hydrogen chloride gas, *B* can be [1989]

- (a) Phorone
- (b) Formose
- (c) Diacetone alcohol
- (d) Mesityl oxide
- **36.** Acetone is treated with excess of ethanol in the presence of hydrochloric acid. The product obtained is [2012]

(c)
$$(CH_3)_2C < OH OC_2H_5$$

(d)
$$(CH_3)_2C$$
 OC_2H_5 OC_2H_5

- **37.** Phenylmethanol can be prepared by reducing the benzaldehyde with [1997]
 - (a) CH₃Br
- (b) Zn and HCI
- (c) CH3Br and Na
- (d) CH₃I and Mg
- **38.** CH_3CHO and $C_6H_5CH_2CHO$ can be distinguished chemically by [2012]
 - (a) Benedict test
- (b) lodoform test
- (c) Tollen's reagent test
- (d) Fehling solution test
- 39. Reaction by which Benzaldehyde cannot be prepared [2013]

(a)
$$+Zn/Hg$$
 and conc. HCl

(b)
$$CH_3 + CrO_2CI_2$$
 in CS_2 followed by H_3O^+

(c)
$$+H_2$$
 in presence of $Pd + BaSO_4$

(d)
$$+CO+HCI$$
 in presence of anhydrous $AICI_3$

40. Predict the product in the given reaction

CHO

[2012]

$$CI \xrightarrow{50 \% KOH} CH_2COO$$

$$CI \xrightarrow{C} CH_2OH + CH_2COO$$

(c)
$$CH_2OH$$
 + CI

41. Which one is most reactive towards Nucleophilic addition reaction [2014]

(a)
$$CHO$$
 (b) CHO (c) CHO (d) $COCH_3$

42. Acetophenone when reacted with a base, C_2H_5ONa , yields a stable compound which has the structure [2008]

(d)
$$C - CHC$$
 CH_3
 CH_3
 CH_3

- **43.** The reagent(s) which can be used to distinguish acetophenone from benzophenone is (are) [1990]
 - (a) 2, 4-dinitrophenyl hydrazine
 - (b) Aqueous solution of NaHSO3
 - (c) Benedict reagent
 - (d) I_2 and Na_2CO_3
- **44.** Match the compounds given in **List I** with **List II** and select the suitable option using the code given below

List I		List II
(A) Benzaldehyde	(i)	Phenolphthalein
(B) Phthalic anhydride	(ii)	Benzoin condensation
(C) Phenyl benzoate	(iii)	Oil of wintergreen
(D) Methyl	(iv)	Fries
salicylate		rearrangement
Code		[2011]

- (C) (D) (A) (B) (i) (a) (ii) (iii) (iv) (iv) (iii) (b) (ii) (i) (iii) (ii) (c) (iv) (i)
- (d) (iv) (ii) (iii) (i)
- 45. The correct structure of the product A formed in the reaction

$$\begin{array}{c|c}
O \\
\hline
H_2 \text{ (gas, 1 atmosphere)} \\
\hline
Pd / \text{carbon, ethanol}
\end{array}$$
A is
$$\begin{array}{c|c}
OH \\
OH \\
OH
\end{array}$$
(c)
$$OH \\
OH$$
(d)

12. AIIMS

1. Dry heating of calcium acetate gives

[1996]

- (a) Acetaldehyde
- (b) Ethane
- (c) Acetic acid
- (d) Acetone
- 2. The major product of the following reaction is

$$CH_{3}$$

$$CH_{3} - C - CH_{2} - OH \xrightarrow{H_{2}SO_{4}}$$

$$OH$$
[2007]

- (a) $(CH_3)_2C = CH_2$
- (b) Butan-2-one

$$\begin{array}{c} OH \\ | \\ (c) \ (CH_3)_2C-CHO \end{array}$$

(d) Isobutyraldehyde

3.
$$(i) CrO_3 \longrightarrow A; Product A is$$
 [2015]

- Which of the following does not give brick red precipitate with Fehling solution [1996]
 - (a) Acetone
- (b) Acetaldehyde
- (c) Formalin
- (d) D-glucose
- 5. Acetaldehyde and acetone can be distinguished by [1996]
 - (a) Molisch test
- (b) Bromoform test
- (c) Solubility in water
- (d) Tollen's test
- **6.** Which one of the following gives iodoform test [1996]
 - (a) Formaldehyde
- (b) Ethyl alcohol
- (c) Benzyl alcohol
- (d) Benzaldehyde
- 7. Formaldehyde reacts with ammonia to give urotropine.

The formula of urotropine is

[1982]

5.

- (a) $(CH_2)_6 N_4$
- (b) $(CH_2)_4 N_3$
- (c) $(CH_2)_6 N_6$
- (d) $(CH_2)_3 N_3$
- **8.** CH₃CHO react with aqueous NaOH solution to form

[2008]

- (a) 3-hydroxy butanal
- (b) 2-hydroxy butanal
- (c) 4-hydroxy butanal
- (d) 3-hydroxy butanol
- The reagent that gives an orange coloured precipitate with acetaldehyde [1987]
 - (a) NH2OH
- (b) $NaHSO_3$
- (c) Iodine
- (d) 2, 4-DNP

10. The reaction of acetaldehyde with conc. KMnO₄ gives

[1996]

- (a) CH₃COOH
- (b) CH₃CH₂OH
- (c) HCHO
- (d) CH₃OH
- 11. Which of the following products is formed when benzaldehyde is treated with CH_3MgBr and the addition product so obtained is subjected to acid hydrolysis [2015]
 - (a) A secondary alcohol
- (b) A primary alcohol
- (c) Phenol
- (d) tert-Butyl alcohol
- The reagent used for the separation of acetaldehyde from acetophenone is [2004]
 - (a) NaHSO₃
- (b) $C_6H_5NHNH_2$
- (c) NH₂OH
- (d) $NaOH I_2$

13. Assertion and Reason

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- Assertion : Lower aldehyde and ketones are soluble in water but the solubility decreases as molecular mass increases.
 - Reason : Aldehydes and ketones can be distinguished by Tollen's reagent. [AIIMS 1994, 99]
- Assertion : Acetaldehyde on treatment with alkaline gives aldol.
 - Reason : Acetaldehyde molecules contains α hydrogen atom. [AIIMS 1997]
- 3. Assertion : Acetylene on treatment with alkaline $KMnO_4$ produce acetaldehyde.
 - Reason : Alkaline $KMnO_4$ is a reducing agent.

[AIIMS 2000]

- Assertion : Acetophenone and benzophenone can be distinguished by iodoform test.
 - Reason : Acetophenone and benzophenone both are carbonyl compounds. [AIIMS 2002]
 - Assertion : Isobutanal does not give iodoform test
- Reason : It does not have α -hydrogen. [AIIMS 2004]
- Assertion : α-Hydrogen atoms in aldehydes and ketones are acidic.
 - Reason : The anion left after the removal of α -hydrogen is stabilized by inductive effect.
- 7. Assertion : Hydroxyketones are not directly used in Grignard reaction.
 - Reason : Grignard reagents react with hydroxyl group. [AIIMS 2003]

30. Aldehydes and Ketones – Answers Keys

. Ir	ntrod	uctio	n						
1	С	2	b	3	С	4	b	5	С
6	a	7	b	8	d	9	a		
. P	repa	ratio	n of A	Aldeh	ydes	and	Keto	nes	
1	С	2	a	3	С	4	b	5	d
6	a	7	d	8	b	9	b	10	b
11	d	12	С	13	d	14	d	15	С
16	a	17	a	18	b	19	С	20	b
21	a								
3. P	rope	rties	of A	ldehy	des	and I	Ketoı	nes	
1	С	2	b	3	С	4	С	5	d
6	d	7	d	8	ь	9	a	10	d
11	С	12	a	13	С	14	b	15	d
16	ь	17	С	18	С	19	a	20	d
21	b	22	a	23	a	24	С	25	a
26	b	27	a	28	С	29	d	30	a
31	d	32	a	33	b	34	a	35	d
36	ь	37	a	38	a	39	b	40	a
41	ь	42	С				13		
4. F	orm	aldel	nyde						
1	С	2	d						
5. /	Aceta	aldeh	yde			W.L	E L		
1	a	2	С	3	ь	4	С	5	d
6	a	7	b						
6.	Acet	one	L. Harris		100.20	A MARINE		*	
1	b	2	·c	3	a	4	ь	5	t
7.	Benz	aldel	nyde			136	Area.	新· (44)	40
1	b	2	ь	3	b	4	b	5	ŧ
6	d	7	b	8	ь				

1	С	2	С	3	b	4	d	5	a
	nsat eton	urate	d	Cycli	c,	Di-alo	lehy	des	and
1	Ç	2	a	3	d	4	a	5	ь
6	a	7	ь						
10. II	T-JE	E/ AIE	EE						
1	a	2	С	3	d	4	d	5	d
6	С	7	С	8	d	9	С	10	a
11	С	12	d	13	c	14	b	15	b
16	a	17	ь	18	d	19	ь	20	С
21	d	22	c	23	b	24	d	25	a
26	ь	27	a	28	b	29	ь	30	ь
31	С	32	С						
11. N	EET	AIP	/IT/ (CBSE-	-PM	T			
1	a	2	d	3	a	4	С	5	С
6	a	7	d	8	d	9	a	10	С
11	b	12	С	13	a	14	d	15	d
16	a	17	С	18	b	19	С	20	a
21	ь	22	ь	23	С	24	ь	25	b
26	ь	27	a	28	b	29	С	30	С
31	d	32	a	33	d	34	d	35	a
36	d	37	b	38	b	39	a	40	с
41	ь	42	b	43	d	44	b	45	С
12. A	IIMS	H A							
1	d	2	d	3	d	4	a	5	d
6	ь	7	a	8	a	9	d	10	a
11	a	12	a		5 D				
13. A	ssei	rtion a	and	Reaso	n				
1	b	2	a	3	d	4	b	5	С
6		7	a		1				