27. Communication - Multiple Choice Questions

1. Communication

- For television broadcasting, the frequency employed is normally
 - (a) 30-300 MHz
- (b) 30-300 GHz
- (c) 30-300 KHz
- (d) 30-300 Hz
- When a low flying aircraft passes over head, we sometimes notice a slight shaking of the picture on our TV screen. This is due to
 - (a) Diffraction of the signal received from the antenna
 - (b) Interference of the direct signal received by the antenna with the weak signal reflected by the passing aircraft
 - (c) Change of magnetic flux occurring due to the passage of aircraft
 - (d) Vibrations created by the passage of aircraft
- 3. In satellite communication
 - 1. The frequency used lies between 5 MHz and 10 MHz
 - 2. The uplink and downlink frequencies are different
 - 3. The orbit of geostationary satellite lies in the equatorial plane at an inclination of 0°

In the above statements

- (a) Only 2 and 3 true
- (b) All are true
- (c) Only 2 true
- (d) Only 1 and 2 true
- (e) Only 1 and 3 true
- Arrange the following communication frequency bands in the increasing order of frequencies
 - 1. AM broadcast
 - 2. Cellular mobile radio
 - 3. F.M. broadcast
 - 4. Television UHF
 - 5. Satellite communication
 - (a) 13425
- (b) 12345
- (c) 52431
- (d) 13245
- Why do we need carrier wave of high frequency to transmit audio signal over long distances
 - (a) High frequency carrier wave can propagate with a faster speed
 - (b) High frequency carrier waves offer availability of higher transmission bandwidth
 - (c) High frequency carrier waves offer availability of lower transmission bandwidth
 - (d) High frequency carrier waves is easy to produce

- 6. A basic communication system consists of
 - A. Transmitter
- B. Information source
- C. User of information
- D. Channel
- E. Receive

Choose the correct sequence in which these are arranged in a basic communication system

- (a) ABCDE
- (b) BADEC
- (c) BDACE
- (d) BEADC
- In an amplitude modulated wave for audio frequency of 500 cycle/second, the appropriate carrier frequency will be
 - (a) 50 cycles/s
- (b) 100 cycles/s
- (c) 500 cycles/s
- (d) 50,000 cycles/s
- **8.** A 1000kHz carrier wave is modulated by an audio signal of frequency range 100-5000Hz. Then the width of the channel in KHz is
 - (a) 10

(b) 20

(c) 30

(d) 40

- (e) 50
- 1000kHz carrier wave is amplitude modulated by the signal frequency 200 – 4000Hz. The channel width of this case is
 - (a) 8 *kHz*
- (b) 4 kHz
- (c) 7.6 kHz
- (d) 3.8 kHz
- (e) 400 kHz
- 10. A message signal of frequency ω_m g is superposed on a carrier wave of frequency ω_c to get an Amplitude Modulated Wave (AM). The frequency of the AM wave will be
 - (a) ω...

- (b) ω_{-}
- (c) $\frac{\omega_c + \omega_m}{2}$
- (d) $\frac{\omega_c \omega_r}{2}$
- 11. I-V characteristics of four devices are shown in figure

Identify devices that can be used for modulation

- (a) (i) and (iii)
- (b) Only (iii)
- (c) (ii) and some regions of (iv)
- (d) All the devices can be used

- 12. A male voice after modulation transmission sounds like that of a female to the receiver. The problem is due to
 - (a) Poor selection of modulation index (Selected 0 < m < 1)
 - (b) Poor bandwidth selection of amplifiers
 - (c) Poor selection of carrier frequency
 - (d) Loss of energy in transmission
- 13. Identify the mathematical expression for amplitude modulated wave
 - (a) $A_c \sin[\{\omega_c + k_1 V_m(t)\}t + \phi]$
 - (b) $A_c \sin\{\omega_c t + \phi + k_2 V_m(t)\}$
 - (c) $\{A_c + k_2 V_m(t)\} \sin(\omega_c t + \phi)$
 - (d) $A_c V_m(t) \sin(\omega_c t + \phi)$
- 14. The velocity of all radio waves in free space is 3×10^8 m/s. The frequency of a radio wave of wavelength 150m is
 - (a) 20 kHz
- (b) 2 kHz
- (c) 2 MHz
- (d) 1 MHz
- **15.** A 100m long antenna is mounted on a 500m tall building. The complex can become a transmission tower for waves with 2
 - (a) $\sim 400 m$
- (b) $\sim 25 m$
- (c) $\sim 150 m$
- (d) $\sim 2400 m$
- 16. Sinusoidal carrier voltage of frequency 1.5 MHz and amplitude 50 V is amplitude modulated by sinusoidal voltage of frequency 10 kHz producing 50% modulation. The lower and upper side-band frequencies in kHz are
 - (a) 1490, 1510
- (b) 1510, 1490
- (c) $\frac{1}{1490}$, $\frac{1}{1510}$ (d) $\frac{1}{1510}$, $\frac{1}{1490}$
- 17. A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2.51 MHz. The upper and lower side band frequencies are respectively
 - (a) 2512 kHz and 2508 kHz (b) 2522 kHz and 2488 kHz
 - (c) 2502 kHz and 2498 kHz (d) 2522 kHz and 2498 kHz
 - (e) 2512 kHz and 2488 kHz
- 18. A speech signal of 3 kHz is used to modulate a carrier signal of frequency 1MHz, using amplitude modulation. The frequencies of the side bands will be
 - (a) 1.003 MHz and 0.997 MHz
 - (b) 3001kHz and 2997kHz
 - (c) 1003kHz and 1000kHz
 - (d) 1MHz and 0.997MHz

- 19. A carrier frequency of 1MHz and peak value of 10V is amplitude modulated with a signal frequency of 10 kHz with peak value of 0.5 V. Then the modulation index and the side band frequencies respectively are
 - (a) 0.05 and 1 ± 0.010 MHz
 - (b) 0.5 and $1 \pm 0.010 MHz$
 - (c) 0.05 and 1 ± 0.005 MHz
 - (d) 0.5 and 1 ± 0.005 MHz
 - (e) 0.05 and 1 ± 0.100 MHz
- **20.** If a number of sine waves with modulation indices n_1 , n_2 , n_3 modulate a carrier wave, then total modulation index (n) of the wave is

(a)
$$n_1 + n_2 ... + 2(n_1 + n_2 ...)$$
 (b) $\sqrt{n_1 - n_2 + n_3 ...}$
(c) $\sqrt{n_1^2 + n_2^2 + n_3^2 ...}$ (d) None of these

- 21. If the maximum amplitude of an amplitude modulated wave is 25 V and the minimum amplitude is 5 V, the modulation index is
 - (a) 1/5
- (b) 1/3

- (c) 3/2
- (d) 2/5
- (e) 2/3
- 22. In AM, the centpercent modulation is achieved when
 - (a) Carrier amplitude = signal amplitude
 - (b) Carrier amplitude ≠ signal amplitude
 - (c) Carrier frequency = signal frequency
 - (d) Carrier frequency ≠ signal frequency
- **23.** The audio signal used to modulate $60 \sin(2\pi \times 10^6 t)$ is $15 \sin 300\pi t$. The depth of modulation is
 - (a) 50%
- (b) 40%
- (c) 25%
- (d) 15%
- 24. Identify the incorrect statement from the following
 - (a) AM detection is carried out using a rectifier and an envelop detector
 - (b) Pulse Position denotes the time of rise or fall of the pulse amplitude
 - (c) Modulation index μ is kept ≥ 1 , to avoid distortion
 - (d) Facsimile (FAX) scans the contents of the document to create electronic signals
 - Detection is the process of recovering the modulating signal from the modulated carrier wave
- 25. For an amplitude modulated wave, the maximum amplitude is found to be 12 V and minimum amplitude is found to be 4V. The modulation index of this wave is $___$ %
 - (a) 25

(b) 50

(c) 75

(d) 20

- 26. A carrier is simultaneously modulated by two sine waves with modulation indices of 0.4 and 0.3. The resultant modulation index will be
 - (a) 1.0

(b) 0.7

(c) 0.5

- (d) 0.35
- 27. The maximum peak to peak voltage of an AM wire is 24 mV and the minimum peak to peak voltage is 8 mV. The modulation factor is
 - (a) 10%

(b) 20%

(c) 25%

- (d) 50%
- 28. Figure given shows a sinusoidal wave on a string. If the frequency of the wave is 150Hz and the mass per unit length of the string is 0.2g/m, the power transmitted by the wave is

- (b) 3.84W
- (c) 4.80W
- (d) 5.78W

- 29. The antenna current of an AM transmitter is 8 A when only carrier is sent but increases to 8.96 A when the carrier is sinusoidally modulated. The percentage modulation is
 - (a) 50%

(b) 60%

(c) 65%

- (d) 71%
- 30. An amplitude modulated wave is modulated to 50%. What is the saving in power if carrier as well as one of the side bands are suppressed
 - (a) 70%

(b) 65.4%

- (c) 94.4%
- (d) 25.5%
- 31. A 1kW signal is transmitted using a communication channel which provides attenuation at the rate of -2dB per km . If the communication channel has a total length of $5\,\mathrm{km}$, the power

of the signal received is [gain in $dB = 10 \log \left(\frac{P_0}{P_0} \right)$]

- (a) 900W
- (b) 100W
- (c) 990W
- (d) 1010W
- 32. Long distance short-wave radio broadcasting uses
 - (a) Ground wave
- (b) Ionospheric wave
- (c) Direct wave
- (d) Sky wave
- 33. The electromagnetic waves of frequency 2 MHz to 30 MHz are used
 - (a) In ground wave propagation
 - (b) In sky wave propagation
 - (c) In microwave propagation
 - (d) In satellite communication
- 34. The sky wave propagation is suitable for radio-waves of frequency
 - (a) Upto 2 MHz
- (b) From 2 MHz to 20 MHz
- (c) From 2 MHz to 30 MHz (d) From 2 MHz to 50 MHz

- 35. Which of the following frequencies will be suitable for beyond the horizon communication
 - (a) 10 KHz

(b) 10 MHz

- (c) 1 GHz
- (d) 1000 GHz
- **36.** Three waves A, B and C of frequencies $1600 \, \text{kHz}$, $5 \, \text{MHz}$ and 60 MHz, respectively are to be transmitted from one place to another. Which of the following is the most appropriate mode of communication
 - A is transmitted via spaced wave while B and C are transmitted via sky wave
 - (b) A is transmitted via ground wave, B via sky wave and C via space wave
 - (c) B and C are transmitted via ground wave while A is transmitted via sky wave
 - (d) B is transmitted via ground wave while A and C are transmitted via space wave
- 37. The maximum line-of-sight distance d_M between two antennas having heights $\,h_T\,$ and $\,h_R\,$ above the earth is

(a)
$$\sqrt{R(h_T + h_R)}$$

(a)
$$\sqrt{R(h_T + h_R)}$$
 (b) $\sqrt{2R/(h_T + h_R)}$

(c)
$$\sqrt{Rh_T} + \sqrt{2Rh_R}$$

(d)
$$\sqrt{2Rh_T} + \sqrt{2Rh_R}$$

(e)
$$\sqrt{2Rh_T} + \sqrt{Rh_R}$$

- 38. The distance of coverage of a transmitting antenna is 12.8km. Then, the height of the antenna is (Given that radius of earth $= 6400 \ km)$
 - (a) 6.4 m
- (b) 12.8 m
- (c) $3.2 \, m$
- (d) 16 m
- (e) 25.6 m
- 39. The area of the region covered by the TV broadcast by a TV tower of 100 m height is (radius of the earth = 6.4×10^6 m)
 - (a) $12.8\pi \times 10^8 \text{ km}^2$
- (b) $1.28\pi \times 10^3 \text{ km}^2$
- (c) $0.64\pi \times 10^3 \text{ km}^2$
- (d) 1.28×103 km2
- **40.** A transmitting antenna of height h and the receiving antenna of height 45 m are separated by a distance of 40 km for satisfactory communication in line of sight mode. Then the value of h is (given radius of earth is 6400 km)
 - (a) 15 m
- (b) $20 \, m$
- (c) 30 m
- (d) 25 m
- (e) 40 m
- 41. If both the length of an antenna and the wavelength of the signal to be transmitted are doubled, the power radiated by the antenna
 - (a) Is doubled
- (b)Is halved
- (c) Remains constant
- (d)Is quadrupled
- (e) Increases 16 times

- 42. For good demodulation of AM signal of carrier frequency f, the value of RC should be
- (a) $RC = \frac{1}{f}$ (c) $RC \ge \frac{1}{f}$
- (b) $RC < \frac{1}{f}$ (d) $RC >> \frac{1}{f}$
- 43. Television signals on earth cannot be received at distances greater than 100 km from the transmission station. The reason behind this is that
 - (a) The receiver antenna is unable to detect the signal at a distance greater than 100 km
 - (b) The TV programme consists of both audio and video signals
 - (c) The TV signals are less powerful than radio signals
 - (d) The surface of earth is curved like a sphere
- 44. An optical fiber can offer a band width of
 - (a) 100 MHz
- (b) 100 GHz
- (c) 750 MHz
- (d) 250 MHz
- 45. AM is used for broadcasting because
 - (a) It is more noise immune than other modulation systems
 - (b) It requires less transmitting power compared with other systems
 - (c) Its use avoids receiver complexity
 - (d) No other modulation system can provide the necessary bandwidth faithful transmission
- 46. In frequency modulation
 - (a) The amplitude of modulated wave varies as frequency of carrier wave
 - (b) The frequency of modulated wave varies as amplitude of modulating wave
 - (c) The frequency of modulated wave varies as frequency of modulating wave
 - (d) The frequency of modulated wave varies as frequency of carrier wave
- 47. Maximum usable frequency (MUF) in F-region layer is x, when the critical frequency is 60 MHz and the angle of incidence is 70° . Then x is
 - (a) 150 MHz
- (b) 170 MHz
- (c) 175 MHz
- (d) 190 MHz
- **48.** The electron density of E, F_1 , F_2 layers of ionosphere is 2×10^{-2} 10^{11} , 5×10^{11} and 8×10^{11} m^{-3} respectively. What is the ratio of critical frequency for reflection of radiowaves
 - (a) 2:4:3
- (b) 4:3:2
- (c) 2:5:8
- (d) 3:2:4

IIT-JEE/AIEEE

- 1. A signal of 5 kHz frequency is amplitude modulated on a carrier wave of frequency 2MHz. The frequencies of the [2015] resultant signal is/are
 - (a) 2 MHz only
 - (b) 2005 kHz and 1995 kHz
 - (c) 2005 kHz, 2000 kHz and 1995 kHz
 - (d) 2000 kHz and 1995 kHz

- 2. A radar has a power of 1 kW and is operating at a frequency of 10 GHz. It is located on a mountain top of height 500m. The maximum distance upto which it can detect object located on the surface of the earth (Radius of earth = $6.4 \times 10^6 m$) is
 - (a) 80 km
- (b) 16 km
- (c) 40 km
- (d) 64 km
- 3. A diode detector is used to detect an amplitude modulated wave of 60% modulation by using a condenser of capacity 250 pico farad in parallel with a load resistance 100 kilo ohm. Find the maximum modulated frequency which could be detected by it [2013]
 - (a) 10.62 MHz
- (b) 10.62 kHz
- (c) 5.31 MHz
- (d) 5.31 kHz
- 4. Consider telecommunication through optical fibres. Which of the following statements is not true
 - (a) Optical fibres may have homogeneous core with a suitable cladding
 - (b) Optical fibres can be of graded refractive index
 - (c) Optical fibres are subject to electromagnetic interference from outside
 - (d) Optical fibres have extremely low transmission loss
- 5. Choose the correct statement

[2016]

- (a) In amplitude modulation the frequency of high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal
- (b) In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal
- (c) In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the frequency of the audio signal
- (d) In amplitude modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal
- 6. In amplitude modulation, sinusoidal carrier frequency used is denoted by ω_c and the signal frequency is denoted ω_m . The bandwidth $(\Delta \omega_m)$ of the signal is such that $\Delta \omega_m \ll \omega_c$. Which of the following frequency is not contained in the [2017] modulated wave
 - (a) $\omega_c \omega_m$
- (b) ω_m
- (c) ω_c
- (d) $\omega_m + \omega_c$
- 7. A telephonic communication service is working at carrier frequency of 10 GHz. Only 10% of it is utilized for transmission. How many telephonic channels can be transmitted simultaneously if each channel requires a [2018] bandwidth of 5 kHz
 - (a) 2×10^5
- (b) 2×10^6
- (c) 2×10^3
- (d) 2×10^4

27. Communication – Answers Keys

		9	ь	3	a	4	a	5	b
1	a	2	•		-			5 (5) (3) (3)	
6	ь	7	d	8	а	9	a	10	b
11	С	12	b	13	С	14	С	15	а
16	.a .	17	đ	18	а	19	a	20	C
21	e	22.	.a	23	c	24	c	25	b
26	ç	27	d	28	ь	29	đ	30	c
31	b	32	c	33	ь	34	С	35	þ
36	ъ	37	d	38	b	39	b	40	b
41	С	42	d	43	d	44	ь	45	· c
46	b	47	С	48	c				

2. IIT-JEE/AIEEE										
1	С	2	a	3	b	4	C	5	d	
6	b	7	a							